The influence of melt convection on dendrite growth during the upward-directional solidification of Pb-33%Sn binary alloys was investigated.The melt convection was modulated by traveling magnetic field.When the direct...The influence of melt convection on dendrite growth during the upward-directional solidification of Pb-33%Sn binary alloys was investigated.The melt convection was modulated by traveling magnetic field.When the direction of traveling magnetic field was changed from upward to downward,the primary dendrite spacing gradually increased,and the distribution peak of the primary dendrite spacing shifted to the field of narrower spacing.These result from the different intensities of melt convection,which are controlled by the traveling magnetic field.The effects of the traveling magnetic field on melt convection are similar to those of adjustment in the gravity level,thus,the primary dendrite spacing varies.When the intensity of the traveling magnetic field was 1 mT,and the drawing speed was 50 μm/s,the gravity acceleration reached 0.22g for the downward-traveling magnetic field and 3.07g for the upward-traveling magnetic field.展开更多
Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion ...Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disk. The proportions of several quantities of BH systems for both AGNs and microquasars are derived by combining the observational data with CEBZMC. It is shown that the square of the magnetic field at the BH horizon is inversely proportional to the BH mass, while the accretion rate of the disk is proportional to the BH mass. In addition, the very steep emissivity indexes from the recent XMM-Newton observations of the nearby bright Seyfert 1 galaxy MCG-6-30-15 and the microquasars XTE J1650-500 are well fitted by considering the MC effects on the disk radiation. These results suggest strongly the correlations of A GNs with microquasars.展开更多
We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using pro-jection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards th...We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using pro-jection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards the center at the onset of turbulence in hydrodynamic limit. Comparison with the system under the effect of a uniform magnetic field yields difference in the onset of turbulence consistent with observations, showing that the presence of magnetic field inhibits onset of instability or turbulence. The laminar-turbulent transition is demonstrated in a phase transition plot of the development in time of the relative average velocities vs. Reynolds number showing a sharp increase of the relative average velocity at the transition point as determined by the critical Reynolds number.展开更多
基金Project(50827102)supported by the National Natural Science Foundation of ChinaProject(2010CB631202)supported by the National Basic Research Program of ChinaProject(28-TP-2009)supported by Research Fund of State Key Laboratory of Solidification Processing(NWPU),China
文摘The influence of melt convection on dendrite growth during the upward-directional solidification of Pb-33%Sn binary alloys was investigated.The melt convection was modulated by traveling magnetic field.When the direction of traveling magnetic field was changed from upward to downward,the primary dendrite spacing gradually increased,and the distribution peak of the primary dendrite spacing shifted to the field of narrower spacing.These result from the different intensities of melt convection,which are controlled by the traveling magnetic field.The effects of the traveling magnetic field on melt convection are similar to those of adjustment in the gravity level,thus,the primary dendrite spacing varies.When the intensity of the traveling magnetic field was 1 mT,and the drawing speed was 50 μm/s,the gravity acceleration reached 0.22g for the downward-traveling magnetic field and 3.07g for the upward-traveling magnetic field.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10373006 and 10121503
文摘Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disk. The proportions of several quantities of BH systems for both AGNs and microquasars are derived by combining the observational data with CEBZMC. It is shown that the square of the magnetic field at the BH horizon is inversely proportional to the BH mass, while the accretion rate of the disk is proportional to the BH mass. In addition, the very steep emissivity indexes from the recent XMM-Newton observations of the nearby bright Seyfert 1 galaxy MCG-6-30-15 and the microquasars XTE J1650-500 are well fitted by considering the MC effects on the disk radiation. These results suggest strongly the correlations of A GNs with microquasars.
文摘We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using pro-jection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards the center at the onset of turbulence in hydrodynamic limit. Comparison with the system under the effect of a uniform magnetic field yields difference in the onset of turbulence consistent with observations, showing that the presence of magnetic field inhibits onset of instability or turbulence. The laminar-turbulent transition is demonstrated in a phase transition plot of the development in time of the relative average velocities vs. Reynolds number showing a sharp increase of the relative average velocity at the transition point as determined by the critical Reynolds number.