通过机械合金化球磨反应制备了含不同组元数和等摩尔比组成的合金体系Mg-TiV-Cr-Ni,利用XRD、EDS能谱分析、TEM以及DSC/TG热分析了组元数及热处理对合金球磨产物微观组织和相形成规律的影响.结果表明:经20h球磨后,二元合金Mg-Cr、Mg-V...通过机械合金化球磨反应制备了含不同组元数和等摩尔比组成的合金体系Mg-TiV-Cr-Ni,利用XRD、EDS能谱分析、TEM以及DSC/TG热分析了组元数及热处理对合金球磨产物微观组织和相形成规律的影响.结果表明:经20h球磨后,二元合金Mg-Cr、Mg-V与MgTi体系几乎不发生合金化反应,随合金主组元数的增加,高混合熵效应可促进多元合金组元之间的相互反应和固溶,其中五元高熵合金Mg Ti VCr Ni球磨产物可形成富Mg的非晶相与贫Mg的纳米晶BCC型相.经400-600℃热处理后,合金Mg Ti VCr Ni球磨组织中的非晶相经晶化后转变为新的和贫Mg的BCC型结构相,当温度提高至600℃时,残余的金属Cr逐渐在BCC型相中固溶,最终形成稳定的单相BCC型固溶体.球磨高熵合金Mg Ti VCr Ni中形成的BCC型固溶体结构具有较高的热稳定性.展开更多
WC-8Co cemented carbide samples were processed via microwave irradiation in a 2.45 GHz, high-power multi-mode microwave cavity. The densification of the compacts and the microstructures of the prepared alloys were stu...WC-8Co cemented carbide samples were processed via microwave irradiation in a 2.45 GHz, high-power multi-mode microwave cavity. The densification of the compacts and the microstructures of the prepared alloys were studied. The results demonstrate that the liquid phase is formed around 1300 ℃ and nearly full densification is obtained at 1450 ℃ for 5 min via microwave irradiation. The microstructures of microwave sintered samples have finer and more uniform WC grains than those of vacuum sintered samples. Besides, the WC grain size and distribution are only decided by the sintering temperature. Holding time has negligible effects on them. No matter how holding time is, the mean grain size is 2.7 pan when the sintering temperature is kept at 1450 ℃.展开更多
The microstructures of Mg-2Nd-4Zn-1Zr alloy in the as-cast state and after heat treatment were investigated. Several kinds of secondary phases were found and characterized by transmission electron microscopy (TEM), ...The microstructures of Mg-2Nd-4Zn-1Zr alloy in the as-cast state and after heat treatment were investigated. Several kinds of secondary phases were found and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the as-cast alloy, the existing eutectic compounds are Mg-Nd-Zn ternary phases: T phases and W phases. After the heat treatment, with increasing the temperature or time, it was found that T phase almost dissolved into the α-Mg matrix, while a large amount of W phase remained in the matrix. On the other hand, with prolonging the time, the morphology of the phase changed from continuous network to the spherical shape along the grain boundary. The density of the W phase gradually decreased and finally it was coarsened and stabilized in the treatment process.展开更多
Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase ...Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu0.5Al1.0 alloy.展开更多
Tensile test of the as-cast Mg-6Zn-2Er alloy was conducted at room temperature. The results indicate that the alloy is inclined to failure when the strain reaches 5.6%. The coarse secondary phases are responsible for ...Tensile test of the as-cast Mg-6Zn-2Er alloy was conducted at room temperature. The results indicate that the alloy is inclined to failure when the strain reaches 5.6%. The coarse secondary phases are responsible for the failure, especially for the Mg3Zn3Er2 phase (W-phase). It is indicated that the existence of the W-phase activates the stress concentrations due to the incapacity of W-phase for the load transfer, which results in the void at the inner of the W-phase. In comparison, the interface between the matrix and the secondary phase is stable. In conclusion, the characters of the secondary phases with respect to size, distribution, morphology and type, play an important role in the plastic deformation behavior of the alloy.展开更多
Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and...Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.展开更多
文摘通过机械合金化球磨反应制备了含不同组元数和等摩尔比组成的合金体系Mg-TiV-Cr-Ni,利用XRD、EDS能谱分析、TEM以及DSC/TG热分析了组元数及热处理对合金球磨产物微观组织和相形成规律的影响.结果表明:经20h球磨后,二元合金Mg-Cr、Mg-V与MgTi体系几乎不发生合金化反应,随合金主组元数的增加,高混合熵效应可促进多元合金组元之间的相互反应和固溶,其中五元高熵合金Mg Ti VCr Ni球磨产物可形成富Mg的非晶相与贫Mg的纳米晶BCC型相.经400-600℃热处理后,合金Mg Ti VCr Ni球磨组织中的非晶相经晶化后转变为新的和贫Mg的BCC型结构相,当温度提高至600℃时,残余的金属Cr逐渐在BCC型相中固溶,最终形成稳定的单相BCC型固溶体.球磨高熵合金Mg Ti VCr Ni中形成的BCC型固溶体结构具有较高的热稳定性.
基金Project (51274107) supported by the National Natural Science Foundation of China
文摘WC-8Co cemented carbide samples were processed via microwave irradiation in a 2.45 GHz, high-power multi-mode microwave cavity. The densification of the compacts and the microstructures of the prepared alloys were studied. The results demonstrate that the liquid phase is formed around 1300 ℃ and nearly full densification is obtained at 1450 ℃ for 5 min via microwave irradiation. The microstructures of microwave sintered samples have finer and more uniform WC grains than those of vacuum sintered samples. Besides, the WC grain size and distribution are only decided by the sintering temperature. Holding time has negligible effects on them. No matter how holding time is, the mean grain size is 2.7 pan when the sintering temperature is kept at 1450 ℃.
基金Project(50971089)supported by the National Natural Science Foundation of ChinaProject(20100470125)supported by China Postdoctoral Science FoundationProject(2009021028)supported by Science and Technique Foundation for Young Scholars of ShanxiProvince,China
文摘The microstructures of Mg-2Nd-4Zn-1Zr alloy in the as-cast state and after heat treatment were investigated. Several kinds of secondary phases were found and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the as-cast alloy, the existing eutectic compounds are Mg-Nd-Zn ternary phases: T phases and W phases. After the heat treatment, with increasing the temperature or time, it was found that T phase almost dissolved into the α-Mg matrix, while a large amount of W phase remained in the matrix. On the other hand, with prolonging the time, the morphology of the phase changed from continuous network to the spherical shape along the grain boundary. The density of the W phase gradually decreased and finally it was coarsened and stabilized in the treatment process.
基金Project(NCET-11-0127) supported by the Program for New Century Excellent Talents in University,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu0.5Al1.0 alloy.
基金Projects(51071004,51101002)supported by the National Natural Science Foundation of ChinaProject(2011BAE22B01-3)supported by the National Science and Technology Supporting Plan during the 12th Five-Year Period,China
文摘Tensile test of the as-cast Mg-6Zn-2Er alloy was conducted at room temperature. The results indicate that the alloy is inclined to failure when the strain reaches 5.6%. The coarse secondary phases are responsible for the failure, especially for the Mg3Zn3Er2 phase (W-phase). It is indicated that the existence of the W-phase activates the stress concentrations due to the incapacity of W-phase for the load transfer, which results in the void at the inner of the W-phase. In comparison, the interface between the matrix and the secondary phase is stable. In conclusion, the characters of the secondary phases with respect to size, distribution, morphology and type, play an important role in the plastic deformation behavior of the alloy.
基金Project(2011AA061001)supported by the Hi-Tech Research and Development Program of ChinaProject(50830301)supported by theKey Program of National Natural Science Foundation of ChinaProject(50925417)supported by the National Science Fund for Distinguished Young Scientists of China
文摘Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.