The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersiv...The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.展开更多
The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction....The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction.展开更多
In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters...In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s.展开更多
The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in W...The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni.展开更多
Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by s...Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.展开更多
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
基金Project(51901207) supported by the National Natural Science Foundation of ChinaProject(2018M632796) supported by the China Postdoctoral Science FoundationProjects(19A430024, 21A430037) supported by the Plan of Henan Key Scientific Research Project of Universities,China。
文摘The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction.
基金Project(2020E0264) supported by the Xinjiang Science and Technology Project Plan of Autonomous Region,ChinaProject(2020D01C030) supported by the Autonomous Region Natural Science Foundation,China。
文摘In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s.
文摘The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni.
基金Project(2008BAE63B00) supported by the National Key Technologies Research and Development Program of China
文摘Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.