This paper proposed four types of differential modulation to map the unitary code into the orthogonal frequency division multiplexing(OFDM) signal. The time-varying channel model is established and the norm of detecti...This paper proposed four types of differential modulation to map the unitary code into the orthogonal frequency division multiplexing(OFDM) signal. The time-varying channel model is established and the norm of detection metric is deduced. The norm is the inherent interference of the time-varying channel, so it can be used as criterion to evaluate the performance of the mapping schemes. The simulation results agree with the analytic conclusion.展开更多
This paper proposes a novel LDPC based differential unitary space-frequency coding (DUSFC) scheme for MIMO-OFDM systems when neither the transmitter nor the receiver has access to the channel state information (CSI). ...This paper proposes a novel LDPC based differential unitary space-frequency coding (DUSFC) scheme for MIMO-OFDM systems when neither the transmitter nor the receiver has access to the channel state information (CSI). The new DUSFC strategy basically consists of coding across transmit antennas and OFDM tones simultaneously as well as differential modulation in the time-domain. It can fully exploit the inherent advantages provided by the multipath fading channels, resulting in a high degree of diversity. The state-of-the-art low-density parity-check (LDPC) codes are concatenated with our DUSFC as channel coding to improve the bit error rate (BER) performance considerably. Owing to the maximum multipath diversity and large coding advantages, LDPC-DUSFC strongly outperforms the differential unitary space-time coded OFDM techniques re- cently proposed in literature. The corresponding iterative decoding algorithm without channel estimation is finally provided to offer significant performance gain. Simulation results illustrate the merits of the proposed scheme.展开更多
In this paper, we give design methods for three-transmit-antenna space-time codes which have reasonable parameters. A few examples are given to show that some unitary space-time codes constructed with our methods are ...In this paper, we give design methods for three-transmit-antenna space-time codes which have reasonable parameters. A few examples are given to show that some unitary space-time codes constructed with our methods are better than the previously best-known ones.展开更多
Since their advent in the 1980s,optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics,biology,chemistry,medical...Since their advent in the 1980s,optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics,biology,chemistry,medical science and nanoscience.In this paper,we introduce the basic principle,the history and typical applications of optical tweezers and review our recent experimental works on the development and application of optical tweezers technique.We will discuss in detail several technological issues,including high precision displacement and force measurement in single-trap and dual-trap optical tweezers,multi-trap optical tweezers with each trap independently and freely controlled by means of space light modulator,and incorporation of cylindrical vector optical beams to build diversified optical tweezers beyond the conventional Gaussian-beam optical tweezers.We will address the application of these optical tweezers techniques to study biophysical problems such as mechanical deformation of cell membrane and binding energy between plant microtubule and microtubule associated proteins.Finally we present application of the optical tweezers technique for trapping,transporting,and patterning of metallic nanoparticles,which can be harnessed to manipulate surface plasmon resonance properties of these nanoparticles.展开更多
文摘This paper proposed four types of differential modulation to map the unitary code into the orthogonal frequency division multiplexing(OFDM) signal. The time-varying channel model is established and the norm of detection metric is deduced. The norm is the inherent interference of the time-varying channel, so it can be used as criterion to evaluate the performance of the mapping schemes. The simulation results agree with the analytic conclusion.
基金Project (No. 60272079) supported by the National Natural Sci-ence Foundation of China
文摘This paper proposes a novel LDPC based differential unitary space-frequency coding (DUSFC) scheme for MIMO-OFDM systems when neither the transmitter nor the receiver has access to the channel state information (CSI). The new DUSFC strategy basically consists of coding across transmit antennas and OFDM tones simultaneously as well as differential modulation in the time-domain. It can fully exploit the inherent advantages provided by the multipath fading channels, resulting in a high degree of diversity. The state-of-the-art low-density parity-check (LDPC) codes are concatenated with our DUSFC as channel coding to improve the bit error rate (BER) performance considerably. Owing to the maximum multipath diversity and large coding advantages, LDPC-DUSFC strongly outperforms the differential unitary space-time coded OFDM techniques re- cently proposed in literature. The corresponding iterative decoding algorithm without channel estimation is finally provided to offer significant performance gain. Simulation results illustrate the merits of the proposed scheme.
基金The research is supported by the National Natural Science Foundation of China under Grant No.60673074.
文摘In this paper, we give design methods for three-transmit-antenna space-time codes which have reasonable parameters. A few examples are given to show that some unitary space-time codes constructed with our methods are better than the previously best-known ones.
文摘Since their advent in the 1980s,optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics,biology,chemistry,medical science and nanoscience.In this paper,we introduce the basic principle,the history and typical applications of optical tweezers and review our recent experimental works on the development and application of optical tweezers technique.We will discuss in detail several technological issues,including high precision displacement and force measurement in single-trap and dual-trap optical tweezers,multi-trap optical tweezers with each trap independently and freely controlled by means of space light modulator,and incorporation of cylindrical vector optical beams to build diversified optical tweezers beyond the conventional Gaussian-beam optical tweezers.We will address the application of these optical tweezers techniques to study biophysical problems such as mechanical deformation of cell membrane and binding energy between plant microtubule and microtubule associated proteins.Finally we present application of the optical tweezers technique for trapping,transporting,and patterning of metallic nanoparticles,which can be harnessed to manipulate surface plasmon resonance properties of these nanoparticles.