The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,h...The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,hardness test,electrochemical test and DSC techniques.It was found that deposition layers were formed on the surfaces of the simulated launch samples.The thickness and surface roughness of these deposition layers increased with increasing the heat effect,suggesting a launch speed dependent damage degree of the arc ablation.The hardness variation of samples is attributed to the effects of the deposition layer and deformation hardening.The surface deposition layer affects corrosion resistance and crystalline characteristics,leading to changes in subsequent service performances.Additionally,the surface texture and plastic deformation ability of the samples are related to the recrystallization degree and deformation grain amount.展开更多
Quasi-classical trajectory calculations have been employed to investigate the influence of collision energy on the stereodynamics of the title reaction C+CD--~C2+D on the poten- tial energy surface of the 12AI state...Quasi-classical trajectory calculations have been employed to investigate the influence of collision energy on the stereodynamics of the title reaction C+CD--~C2+D on the poten- tial energy surface of the 12AI state developed by Boggio-Pasqua et al. [Mol. Phys. 98, 1925 (2000)]. The product angular distributions which reflect the vector correlation have been calculated. In addition, two polarization-dependent different cross-sections are also presented in the center-of-mass frame respectively. The results indicate that the product C2 is sensitively affected by collision energy.展开更多
A 20 degree of the freedom model of the micro-suspended monorail is established to analyze a new type of the vehicle system named micro-suspended monorail.The formula of the tire is established by using the magic form...A 20 degree of the freedom model of the micro-suspended monorail is established to analyze a new type of the vehicle system named micro-suspended monorail.The formula of the tire is established by using the magic formula.Through the modal analysis of the vehicle,the modes of the vehicle are obtained,and resonance has little effect on the vehicle.When the vehicle moves in a right turn curve,it yaws in the clockwise direction.Under the action of the guidewheel(stable wheel)force,the front bogie yaws clockwise but the rear one yaws counterclockwise.Moreover,the two bogies and the car body roll during the curve passing process of the vehicle.When the vehicle speed is high enough,the left drive wheel will derail and the anti-overturning moments are provided by the stable wheels.Then,the car body yaws in the counterclockwise direction when it moves out of the curve.In the simulation of the vehicle passing the curve,the clearance between the guide wheel and rail surface will lead to a fatal impact on the bogie.At the same time,the dynamic response of the vehicle under the crosswind is tested.The vehicle will not overturn due to the crosswind.Finally,the collision of adjacent vehicles is analyzed.The results show that there is an intermittent collision force between two vehicles due to the vehicle's non synchronous pitch motion.展开更多
Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under differ...Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.展开更多
The reagent rotational excitation effect on the stereodynamics of H+LiF→HF+Li is calcu-lated by means of the quasi-classical trajectory method on the Aguado-Paniagua2-potential energy surface (AP2-PES) constructe...The reagent rotational excitation effect on the stereodynamics of H+LiF→HF+Li is calcu-lated by means of the quasi-classical trajectory method on the Aguado-Paniagua2-potential energy surface (AP2-PES) constructed by Aguado et al. [J. Chem. Phys. 106, 1013 (1997)]. The angular distributions of vector correlations between products and reactants, P(?r) and P(Φr) are presented. Meanwhile, the four polarization-dependent generalized differential cross sections are computed. The results indicate that the reagent rotational quantum num-bers have impact on the vector properties of the title reaction. In addition, the reaction probability has been calculated as well.展开更多
Theoretical investigations on the stereodynamics of the O(3P)+D2 reaction have been calculated by means of the quasi-classical trajectory to study the product rotational polarization at collision energy of 104.5 k ...Theoretical investigations on the stereodynamics of the O(3P)+D2 reaction have been calculated by means of the quasi-classical trajectory to study the product rotational polarization at collision energy of 104.5 k J/tool on the potential energy surface of the ground 3A" triplet state. The vector properties including angular momentum alignment distributions and four polarization dependent generalized differential cross-sections of product have been presented. Furthermore, the influence of reagent vibrational excitation on the product vector properties has also been studied. The results indicate that the vector properties are sensitively affected by reagent vibrational excitation.展开更多
The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies ...The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies of 1.0, 1.5, 2.0, and 2.5 eV. The distributions of dihedral angle P(~r) and the distributions of P(Or) are discussed. Furthermore, the angular distributions of the product rotational vectors in the form of polar plot in θr and φr are calculated. The differential cross section shows interesting phenomenon that the reaction is dominated by the direct reaction mechanism. Reaction probability and reaction cross section are also calculated. The calculations indicate that the stereo-dynamics properties of the title reactions are sensitive to the collision energy.展开更多
By means of theory of toplogical degree in nonlinear functional analysis combining with qualitative analysis method in ordinary differential equations, we discuss the existence of nontrivial periodic orbits for higher...By means of theory of toplogical degree in nonlinear functional analysis combining with qualitative analysis method in ordinary differential equations, we discuss the existence of nontrivial periodic orbits for higher dimensional autonomous system with small perturbations.展开更多
Spin-orbit scattering effects in a layered quasi-2D disordered electron system have been investigated by the diagrammatic techniques in perturbation theory. The expression of Cooperon (propagator in particle-particle ...Spin-orbit scattering effects in a layered quasi-2D disordered electron system have been investigated by the diagrammatic techniques in perturbation theory. The expression of Cooperon (propagator in particle-particle channel) is obtained as the function of interlayer coupling. The analytical result for the quantum correction to Hall conductivity has been obtained as functions of elastic, inelastic and spin-orbit scattering times. It is shown that the strong and weak couplings correspond, respectively, to the 3D and 2D situations. The Hall coefficient is shown to vanish. The relevant dimensional crossover behavior from 3D to 2D with decreasing the interlayer coupling has been discussed, and the condition for the crossover has been obtained. The present theory is expected to apply for the electronic transport in tunneling superlattices.展开更多
The newly developed single trajectory quadrature method is applied to a two-dimensional example. The results based on different versions of new perturbation expansion and the new Green's function deduced from this...The newly developed single trajectory quadrature method is applied to a two-dimensional example. The results based on different versions of new perturbation expansion and the new Green's function deduced from this method are compared with each other, also compared with the result from the traditional perturbation theory. As the first application to higher-dimensional non-separable potential the obtained result further confirms the applicability and potential of this new method.展开更多
This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parame...This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parameterizations on typhoon track forecast were comparatively strong and the typhoon track forecast of Kain-Fritsch (KF) was superior to that of Betts-Miller (BM). When KF was selected, the simulated results would be improved if microphysics schemes were selected than otherwise. The results from Ferrier, WSM6, and Lin were very close to those in the best track. KF performed well with the simulations of the western extension and eastern contraction changes of a North Pacific high as well as the distribution and strength of the typhoon wind field.展开更多
Picene, which attracts the great interest of researchers, not only can be used to fabricate thin film transistors with high hole mobilities, but also is the parent material of a new type organic superconductor. Here, ...Picene, which attracts the great interest of researchers, not only can be used to fabricate thin film transistors with high hole mobilities, but also is the parent material of a new type organic superconductor. Here, we investigate the electronic properties of individual picene molecules directly adsorbed on Cu(111) surface by a combination of experimental scanning tunneling microscopy/spectroscopy measurements and theoretical calculations based on the density functional theory. At low coverage, the picene molecules exhibit mono-dispersed adsorption behavior with the benzene ring planes parallel to the surface. The highest occupied state around -1.2 V and the lowest unoccupied state around 1.6 V with an obvious energy gap of the singly adsorbed picene molecule are identified by the dI/dV spectra and maps. In addition, we observe the strong dependence of the dI/dV signal of the unoccupied states on the intramolecular positions. Our first-principles calculations reproduce the above experimental results and interpret them as a specific molecule-substrate interaction and energy/spatial distributions of hybrid states mainly derived from different molecular orbitals of picene with some intermixing between them. This work provides direct information on the local electronic structure of individual picene on a metallic substrate and will facilitate the understanding the dependence of electron transport properties on the coupling between molecules and metal electrodes in single-molecule devices.展开更多
In the research of path planning for manipulators with many DOF, generally there is a problem in most traditional methods, which is that their computational cost (time and memory space) increases exponentially as DOF ...In the research of path planning for manipulators with many DOF, generally there is a problem in most traditional methods, which is that their computational cost (time and memory space) increases exponentially as DOF or resolution of the discrete configuration space increases. So this paper presents the collision-free trajectory planning for the space robot to capture a target based on the wavelet interpolation algorithm. We made wavelet sample on the desired trajectory of the manipulator’s end-effector to do trajectory planning by use of the proposed wavelet interpolation formula, and then derived joint vectors from the trajectory information of the end-effector based on the fixed-attitude-restrained generalized Jacobian matrix of multi-arm coordinated motion, so as to control the manipulator to capture a static body along the desired collision-free trajectory. The method overcomes the shortcomings of the typical methods, and the desired trajectory of the end-effector can be any kind of complex nonlinear curve. The algorithm is simple and highly effective and the real trajectory is close to the desired trajectory. In simulation, the planar dual-arm three DOF space robot is used to demonstrate the proposed method, and it shows that the algorithm is feasible.展开更多
Low Earth Orbit (LEO) satellites networks can provide multimedia service and plays an increasingly important role in the exploitation of space. However, one of the challenges in LEO satellites networks is that the s...Low Earth Orbit (LEO) satellites networks can provide multimedia service and plays an increasingly important role in the exploitation of space. However, one of the challenges in LEO satellites networks is that the services are suffered from high symbol error, limited storage space and limited available energy. To analyze the performance of the service in LEO satellites networks, a model, based on differential game, is proposed for satisfying the QoS requirements of multimedia applications. The controller of our model is the transmitting rate and the object is to maximize the payoff depending on the error symbol rate, the available energy, the bandwidth and the process ability so as to guarantee the QoS service. In order to solve our built model, we use the Bellman theorem to make formulas on the trance of the optimal transmitting rate. Furthermore, simulation results verify that the service can be maximized by using our derived transmitting rate trance.展开更多
Microstructural analysis and fatigue crack propagation behavior of three types of rail steels, was performed. These are premium pearlitic, austenitic manganese (AM) and bainitic rail steels. Rectangular un-notched a...Microstructural analysis and fatigue crack propagation behavior of three types of rail steels, was performed. These are premium pearlitic, austenitic manganese (AM) and bainitic rail steels. Rectangular un-notched and notched test specimens were machined from railheads of each material using electrical discharge machining (EDM) and used for the mechanical properties and fatigue evaluation respectively. Bainitic steel has the highest yield strength, ultimate strength, and strain to failure as compared to both pearlitic and austenitic manganese steels. Fatigue studies showed that the crack speed for the bainitic steel is lower than that for the pearlitie and the AM steels over the entire range of the energy release rate. The bainitic steel exhibits a higher rate of crack deceleration in the second stage, as indicated by the lower slope of the fatigue crack propagation kinetics curve in comparison with the pearlitic and manganese rail steels. This attests to the superior fatigue damage tolerance of the bainitic rail steel in comparison to pearlitic and austenitic manganese rail steels. Microstructural analysis of the three rail steels revealed that bainitic steel has a more intricate structure than AM and pearlitic steels. AM steel shows very few signs of being work hardened or toughened, which usually increases the mechanical properties of the material. As the number of alloying elements increase, the microstructure of the steel becomes more complex, resulting in the increase of mechanical properties and fatigue fracture resistance of bainitic rail steel.展开更多
A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is...A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.展开更多
The authors study the bifurcation problems of rough heteroclinic loop connecting threesaddle points for the case β1 > 1, β2 > 1, β3 < 1 and β1β2β3 < 1. The existence, number, co-existence and incoexistence o...The authors study the bifurcation problems of rough heteroclinic loop connecting threesaddle points for the case β1 > 1, β2 > 1, β3 < 1 and β1β2β3 < 1. The existence, number, co-existence and incoexistence of 2-point-loop, 1-homoclinic orbit and 1-periodic orbit are studied.Meanwhile, the bifurcation surfaces and existence regions are given.展开更多
基金the Key Research and Development Program of China(No.2022YFB2404102)the National Natural Science Foundation of China(Nos.51971093,52171158,52101196)+5 种基金the Key Research and Development Program of Shandong Province,China(Nos.2020ZLYS11,2021ZLGX01,2022CXGC020308,2023CXGC010308)the Major Innovation Projects of Shandong Province,China(Nos.2020CXGC010701,2020CXGC010702)the Young Taishan Scholars,China(No.tsqn202211184)the Shandong Provincial Natural Science Foundation,China(No.ZR2022ME137)the Yantai Science and Technology Planning Project,China(No.2021ZDCX001)the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center(Ludong University),China(No.MAETIC2021-11).
文摘The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,hardness test,electrochemical test and DSC techniques.It was found that deposition layers were formed on the surfaces of the simulated launch samples.The thickness and surface roughness of these deposition layers increased with increasing the heat effect,suggesting a launch speed dependent damage degree of the arc ablation.The hardness variation of samples is attributed to the effects of the deposition layer and deformation hardening.The surface deposition layer affects corrosion resistance and crystalline characteristics,leading to changes in subsequent service performances.Additionally,the surface texture and plastic deformation ability of the samples are related to the recrystallization degree and deformation grain amount.
文摘Quasi-classical trajectory calculations have been employed to investigate the influence of collision energy on the stereodynamics of the title reaction C+CD--~C2+D on the poten- tial energy surface of the 12AI state developed by Boggio-Pasqua et al. [Mol. Phys. 98, 1925 (2000)]. The product angular distributions which reflect the vector correlation have been calculated. In addition, two polarization-dependent different cross-sections are also presented in the center-of-mass frame respectively. The results indicate that the product C2 is sensitively affected by collision energy.
基金The National Key Research and Development Program of China(No.2018YFB1201702)the Program of State Key Laboratory of Traction Power(No.2018TPL_T11)the Fundamental Research Funds for the Central Universities(No.2682017CX009).
文摘A 20 degree of the freedom model of the micro-suspended monorail is established to analyze a new type of the vehicle system named micro-suspended monorail.The formula of the tire is established by using the magic formula.Through the modal analysis of the vehicle,the modes of the vehicle are obtained,and resonance has little effect on the vehicle.When the vehicle moves in a right turn curve,it yaws in the clockwise direction.Under the action of the guidewheel(stable wheel)force,the front bogie yaws clockwise but the rear one yaws counterclockwise.Moreover,the two bogies and the car body roll during the curve passing process of the vehicle.When the vehicle speed is high enough,the left drive wheel will derail and the anti-overturning moments are provided by the stable wheels.Then,the car body yaws in the counterclockwise direction when it moves out of the curve.In the simulation of the vehicle passing the curve,the clearance between the guide wheel and rail surface will lead to a fatal impact on the bogie.At the same time,the dynamic response of the vehicle under the crosswind is tested.The vehicle will not overturn due to the crosswind.Finally,the collision of adjacent vehicles is analyzed.The results show that there is an intermittent collision force between two vehicles due to the vehicle's non synchronous pitch motion.
基金support from the Australian Research Council-linkage Project
文摘Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.
基金ACKNOWLEDGMENTS This work was supported by the Jilin University, China (No.419080106440), the Chinese National Fusion Project for ITER (No.2010GB104003), and the National Natural Science Foundation of China (No.10974069). Many thanks to Prof. Ke-li Han for providing the stereodynamics program.
文摘The reagent rotational excitation effect on the stereodynamics of H+LiF→HF+Li is calcu-lated by means of the quasi-classical trajectory method on the Aguado-Paniagua2-potential energy surface (AP2-PES) constructed by Aguado et al. [J. Chem. Phys. 106, 1013 (1997)]. The angular distributions of vector correlations between products and reactants, P(?r) and P(Φr) are presented. Meanwhile, the four polarization-dependent generalized differential cross sections are computed. The results indicate that the reagent rotational quantum num-bers have impact on the vector properties of the title reaction. In addition, the reaction probability has been calculated as well.
文摘Theoretical investigations on the stereodynamics of the O(3P)+D2 reaction have been calculated by means of the quasi-classical trajectory to study the product rotational polarization at collision energy of 104.5 k J/tool on the potential energy surface of the ground 3A" triplet state. The vector properties including angular momentum alignment distributions and four polarization dependent generalized differential cross-sections of product have been presented. Furthermore, the influence of reagent vibrational excitation on the product vector properties has also been studied. The results indicate that the vector properties are sensitively affected by reagent vibrational excitation.
文摘The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies of 1.0, 1.5, 2.0, and 2.5 eV. The distributions of dihedral angle P(~r) and the distributions of P(Or) are discussed. Furthermore, the angular distributions of the product rotational vectors in the form of polar plot in θr and φr are calculated. The differential cross section shows interesting phenomenon that the reaction is dominated by the direct reaction mechanism. Reaction probability and reaction cross section are also calculated. The calculations indicate that the stereo-dynamics properties of the title reactions are sensitive to the collision energy.
文摘By means of theory of toplogical degree in nonlinear functional analysis combining with qualitative analysis method in ordinary differential equations, we discuss the existence of nontrivial periodic orbits for higher dimensional autonomous system with small perturbations.
文摘Spin-orbit scattering effects in a layered quasi-2D disordered electron system have been investigated by the diagrammatic techniques in perturbation theory. The expression of Cooperon (propagator in particle-particle channel) is obtained as the function of interlayer coupling. The analytical result for the quantum correction to Hall conductivity has been obtained as functions of elastic, inelastic and spin-orbit scattering times. It is shown that the strong and weak couplings correspond, respectively, to the 3D and 2D situations. The Hall coefficient is shown to vanish. The relevant dimensional crossover behavior from 3D to 2D with decreasing the interlayer coupling has been discussed, and the condition for the crossover has been obtained. The present theory is expected to apply for the electronic transport in tunneling superlattices.
文摘The newly developed single trajectory quadrature method is applied to a two-dimensional example. The results based on different versions of new perturbation expansion and the new Green's function deduced from this method are compared with each other, also compared with the result from the traditional perturbation theory. As the first application to higher-dimensional non-separable potential the obtained result further confirms the applicability and potential of this new method.
基金National Basic Research Program of China (2009CB421502)National Natural Science Foundation of China (40475018)Research and Development Program of KMA of Korea (NIMR-2010-B-6)
文摘This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parameterizations on typhoon track forecast were comparatively strong and the typhoon track forecast of Kain-Fritsch (KF) was superior to that of Betts-Miller (BM). When KF was selected, the simulated results would be improved if microphysics schemes were selected than otherwise. The results from Ferrier, WSM6, and Lin were very close to those in the best track. KF performed well with the simulations of the western extension and eastern contraction changes of a North Pacific high as well as the distribution and strength of the typhoon wind field.
基金This work was supported by the National Basic Research Program of China (No.2011CB921400), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (No.XDB01020100), the Key Research Program of the Chinese Academy of Sciences (No.KJCX2-EWJ02), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.2011322), and the National Natural Science Foundation of China (No.21473174, No.21273210, and No.51132007).
文摘Picene, which attracts the great interest of researchers, not only can be used to fabricate thin film transistors with high hole mobilities, but also is the parent material of a new type organic superconductor. Here, we investigate the electronic properties of individual picene molecules directly adsorbed on Cu(111) surface by a combination of experimental scanning tunneling microscopy/spectroscopy measurements and theoretical calculations based on the density functional theory. At low coverage, the picene molecules exhibit mono-dispersed adsorption behavior with the benzene ring planes parallel to the surface. The highest occupied state around -1.2 V and the lowest unoccupied state around 1.6 V with an obvious energy gap of the singly adsorbed picene molecule are identified by the dI/dV spectra and maps. In addition, we observe the strong dependence of the dI/dV signal of the unoccupied states on the intramolecular positions. Our first-principles calculations reproduce the above experimental results and interpret them as a specific molecule-substrate interaction and energy/spatial distributions of hybrid states mainly derived from different molecular orbitals of picene with some intermixing between them. This work provides direct information on the local electronic structure of individual picene on a metallic substrate and will facilitate the understanding the dependence of electron transport properties on the coupling between molecules and metal electrodes in single-molecule devices.
文摘In the research of path planning for manipulators with many DOF, generally there is a problem in most traditional methods, which is that their computational cost (time and memory space) increases exponentially as DOF or resolution of the discrete configuration space increases. So this paper presents the collision-free trajectory planning for the space robot to capture a target based on the wavelet interpolation algorithm. We made wavelet sample on the desired trajectory of the manipulator’s end-effector to do trajectory planning by use of the proposed wavelet interpolation formula, and then derived joint vectors from the trajectory information of the end-effector based on the fixed-attitude-restrained generalized Jacobian matrix of multi-arm coordinated motion, so as to control the manipulator to capture a static body along the desired collision-free trajectory. The method overcomes the shortcomings of the typical methods, and the desired trajectory of the end-effector can be any kind of complex nonlinear curve. The algorithm is simple and highly effective and the real trajectory is close to the desired trajectory. In simulation, the planar dual-arm three DOF space robot is used to demonstrate the proposed method, and it shows that the algorithm is feasible.
基金National Science Foundation Project of P.R.China,China Postdoctoral Science Foundation
文摘Low Earth Orbit (LEO) satellites networks can provide multimedia service and plays an increasingly important role in the exploitation of space. However, one of the challenges in LEO satellites networks is that the services are suffered from high symbol error, limited storage space and limited available energy. To analyze the performance of the service in LEO satellites networks, a model, based on differential game, is proposed for satisfying the QoS requirements of multimedia applications. The controller of our model is the transmitting rate and the object is to maximize the payoff depending on the error symbol rate, the available energy, the bandwidth and the process ability so as to guarantee the QoS service. In order to solve our built model, we use the Bellman theorem to make formulas on the trance of the optimal transmitting rate. Furthermore, simulation results verify that the service can be maximized by using our derived transmitting rate trance.
文摘Microstructural analysis and fatigue crack propagation behavior of three types of rail steels, was performed. These are premium pearlitic, austenitic manganese (AM) and bainitic rail steels. Rectangular un-notched and notched test specimens were machined from railheads of each material using electrical discharge machining (EDM) and used for the mechanical properties and fatigue evaluation respectively. Bainitic steel has the highest yield strength, ultimate strength, and strain to failure as compared to both pearlitic and austenitic manganese steels. Fatigue studies showed that the crack speed for the bainitic steel is lower than that for the pearlitie and the AM steels over the entire range of the energy release rate. The bainitic steel exhibits a higher rate of crack deceleration in the second stage, as indicated by the lower slope of the fatigue crack propagation kinetics curve in comparison with the pearlitic and manganese rail steels. This attests to the superior fatigue damage tolerance of the bainitic rail steel in comparison to pearlitic and austenitic manganese rail steels. Microstructural analysis of the three rail steels revealed that bainitic steel has a more intricate structure than AM and pearlitic steels. AM steel shows very few signs of being work hardened or toughened, which usually increases the mechanical properties of the material. As the number of alloying elements increase, the microstructure of the steel becomes more complex, resulting in the increase of mechanical properties and fatigue fracture resistance of bainitic rail steel.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10747004,11065006,and 81060307
文摘A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.
基金Project supported by the National Natural Science Foundation of China (No.10071022) the Shanghai Priority Academic Discipline.
文摘The authors study the bifurcation problems of rough heteroclinic loop connecting threesaddle points for the case β1 > 1, β2 > 1, β3 < 1 and β1β2β3 < 1. The existence, number, co-existence and incoexistence of 2-point-loop, 1-homoclinic orbit and 1-periodic orbit are studied.Meanwhile, the bifurcation surfaces and existence regions are given.