Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion ...Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disk. The proportions of several quantities of BH systems for both AGNs and microquasars are derived by combining the observational data with CEBZMC. It is shown that the square of the magnetic field at the BH horizon is inversely proportional to the BH mass, while the accretion rate of the disk is proportional to the BH mass. In addition, the very steep emissivity indexes from the recent XMM-Newton observations of the nearby bright Seyfert 1 galaxy MCG-6-30-15 and the microquasars XTE J1650-500 are well fitted by considering the MC effects on the disk radiation. These results suggest strongly the correlations of A GNs with microquasars.展开更多
In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnx (x=0.2, 0.4, 0.6, 0.8) solid solutions, microwave irradiation techniques were used in pr...In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnx (x=0.2, 0.4, 0.6, 0.8) solid solutions, microwave irradiation techniques were used in preparing them as thermoelectric materials. Structure and phase composition of the obtained materials were investigated by X-ray diffraction (XRD). The electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature from 300 to 750 K. It is found that Mg2Si1-xSnx solid solutions are well formed with excessive content of 5% (molar fraction) Mg from the stoichiometric MgESil.xSnx under microwave irradiation. A maximum dimensionless figure of merit, ZT, of about 0.26 is obtained for Mg2Si1-xSnx solid solutions at about 500 K for x=0.6.展开更多
Objective To determine whether low power density microwave radiation can induce irreversible changes in rabbit lens epithelial cells (LECs) and the mechanisms of the changes.Methods One eye of each rabbit was exposed ...Objective To determine whether low power density microwave radiation can induce irreversible changes in rabbit lens epithelial cells (LECs) and the mechanisms of the changes.Methods One eye of each rabbit was exposed to 5mW/cm2 or 10mW/cm2 power density microwaves for 3 hours, while the contralateral eye served as a control. Annexin Ⅴ-propidium iodide (PI) two-color flow cytometry (FCM) was used to detect the early changes in rabbit lens epithelial cells after radiation. Results Lots of rabbit LECs were in the initial phase of apoptosis in the 5mW/cm2 microwave radiation group. A large number of cells became secondary necrotic cells, and severe damage could be found in the group exposed to 10mW/cm2 microwave radiation. Conclusion Low power densities of microwave radiation (5mW/cm2 and 10mW/cm2) can induce irreversible damage to rabbit LECs. This may be the non-thermal effect of microwave radiation.展开更多
OBJECTIVE: To demonstrate the changes in gap junctional intercellular communication (GJIC) mediated by low power density microwave radiation in rabbits lens epithelial cells (LECs) and its mechanisms. METHODS: Rabbits...OBJECTIVE: To demonstrate the changes in gap junctional intercellular communication (GJIC) mediated by low power density microwave radiation in rabbits lens epithelial cells (LECs) and its mechanisms. METHODS: Rabbits' eyes were exposed to 5 mW/cm(2) and 10 mW/cm(2) power densities of microwave radiation for 3 hours. The fluorescence-recovery-after-photobleaching (FRAP) method was used to determine the GJIC. The localization and function of connexin 43 in LECs was detected by laser scanning confocal microscopy. RESULTS: The GJIC of rabbits LECs was inhibited by microwave radiation especially in the 10 mW/cm(2) irradiated samples. A decrease in connexin 43-positive staining was seen in 5 mW/cm(2) x 3 h treated LECs. Intracellular space accumulation and cytoplasmic internalization were clearly demonstrated in 10 mW/cm(2) group. CONCLUSIONS: Low power densities microwave radiation (5 mW/cm(2) and 10 mW/cm(2)) induces damage to connexin 43 and inhibits the GJIC of rabbits LECs. These changes result in an osmotic imbalance within the lens and induce early cataract. 5 mW/cm(2) or 10 mW/cm(2) microwave radiation is cataractogenic.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10373006 and 10121503
文摘Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disk. The proportions of several quantities of BH systems for both AGNs and microquasars are derived by combining the observational data with CEBZMC. It is shown that the square of the magnetic field at the BH horizon is inversely proportional to the BH mass, while the accretion rate of the disk is proportional to the BH mass. In addition, the very steep emissivity indexes from the recent XMM-Newton observations of the nearby bright Seyfert 1 galaxy MCG-6-30-15 and the microquasars XTE J1650-500 are well fitted by considering the MC effects on the disk radiation. These results suggest strongly the correlations of A GNs with microquasars.
基金Project(2009BB4228) supported by the Natural Science Foundation of Chongqing City,ChinaProject(CK2010Z09) supported by the Research Foundation of Chongqing University of Science and Technology,China
文摘In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnx (x=0.2, 0.4, 0.6, 0.8) solid solutions, microwave irradiation techniques were used in preparing them as thermoelectric materials. Structure and phase composition of the obtained materials were investigated by X-ray diffraction (XRD). The electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature from 300 to 750 K. It is found that Mg2Si1-xSnx solid solutions are well formed with excessive content of 5% (molar fraction) Mg from the stoichiometric MgESil.xSnx under microwave irradiation. A maximum dimensionless figure of merit, ZT, of about 0.26 is obtained for Mg2Si1-xSnx solid solutions at about 500 K for x=0.6.
文摘Objective To determine whether low power density microwave radiation can induce irreversible changes in rabbit lens epithelial cells (LECs) and the mechanisms of the changes.Methods One eye of each rabbit was exposed to 5mW/cm2 or 10mW/cm2 power density microwaves for 3 hours, while the contralateral eye served as a control. Annexin Ⅴ-propidium iodide (PI) two-color flow cytometry (FCM) was used to detect the early changes in rabbit lens epithelial cells after radiation. Results Lots of rabbit LECs were in the initial phase of apoptosis in the 5mW/cm2 microwave radiation group. A large number of cells became secondary necrotic cells, and severe damage could be found in the group exposed to 10mW/cm2 microwave radiation. Conclusion Low power densities of microwave radiation (5mW/cm2 and 10mW/cm2) can induce irreversible damage to rabbit LECs. This may be the non-thermal effect of microwave radiation.
文摘OBJECTIVE: To demonstrate the changes in gap junctional intercellular communication (GJIC) mediated by low power density microwave radiation in rabbits lens epithelial cells (LECs) and its mechanisms. METHODS: Rabbits' eyes were exposed to 5 mW/cm(2) and 10 mW/cm(2) power densities of microwave radiation for 3 hours. The fluorescence-recovery-after-photobleaching (FRAP) method was used to determine the GJIC. The localization and function of connexin 43 in LECs was detected by laser scanning confocal microscopy. RESULTS: The GJIC of rabbits LECs was inhibited by microwave radiation especially in the 10 mW/cm(2) irradiated samples. A decrease in connexin 43-positive staining was seen in 5 mW/cm(2) x 3 h treated LECs. Intracellular space accumulation and cytoplasmic internalization were clearly demonstrated in 10 mW/cm(2) group. CONCLUSIONS: Low power densities microwave radiation (5 mW/cm(2) and 10 mW/cm(2)) induces damage to connexin 43 and inhibits the GJIC of rabbits LECs. These changes result in an osmotic imbalance within the lens and induce early cataract. 5 mW/cm(2) or 10 mW/cm(2) microwave radiation is cataractogenic.