Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but d...Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but despite considerable study over many years these mechanisms remain poorly understood. This review provides an overview of the importance of heme iron in the diet and discusses the two prevailing hypotheses of heme absorption; namely receptor mediated endocytosis of heme, and direct transport into the intestinal enterocyte by recently discovered heme transporters. A specific emphasis is placed on the questions surrounding the site of heme catabolism and the identity of the enzyme that performs this task. Additionally, we present the hypothesis that a non-heme iron transport protein may be required for heme iron absorption and discuss the experiences of our laboratory in examining this hypothesis.展开更多
The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divi...The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.展开更多
文摘Iron is a critical micronutrient, and iron derived from heme contributes a large proportion of the total iron absorbed in a typical Western diet. Heme iron is absorbed by different mechanisms than non-heme iron, but despite considerable study over many years these mechanisms remain poorly understood. This review provides an overview of the importance of heme iron in the diet and discusses the two prevailing hypotheses of heme absorption; namely receptor mediated endocytosis of heme, and direct transport into the intestinal enterocyte by recently discovered heme transporters. A specific emphasis is placed on the questions surrounding the site of heme catabolism and the identity of the enzyme that performs this task. Additionally, we present the hypothesis that a non-heme iron transport protein may be required for heme iron absorption and discuss the experiences of our laboratory in examining this hypothesis.
基金Project(2013AA064003)supported by the National Technology Research and Development Program of ChinaProject(51564033)supported by the National Natural Science Foundation of ChinaProject(2016FA023)supported by the Yunnan Applied Basic Research(CNMRCUXT1403)State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,China
文摘The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.