[Objective]The aim was to analyze the primary speciation of 6 microelements in Glycyrrhiza uralensis Fisch. and provide theoretical basis for explaining pharmacodynamic principle of liquorice and discussing quality co...[Objective]The aim was to analyze the primary speciation of 6 microelements in Glycyrrhiza uralensis Fisch. and provide theoretical basis for explaining pharmacodynamic principle of liquorice and discussing quality control of liquorice planting. [Method]The 6 elements Cu,Zn,Ca,Fe,Mg and Mn in roots of G.uralensis were extracted based on traditional decoction method and were separated into water-soluble state and suspension state by micro porous filtering film. The elements in water-soluble state were detected by flame atomic adsorption spectrophotometry (FAAS). [Result]The results showed that extractive rates of the elements were in the range of 1.71%-60.06%,and immerse-residue ratio in 0.018 3-1.682 0; the results also indicated that the immerse-residue ratio of Zn was biggest (1.68),Zn played an important medical role and might be considered as the best characteristic element in G.uralensis; the recoveries of the elements were ranged from 95.72% to 103.15% and relative standard deviations (RSD) were less than 2.38%. [Conclusion]Because of its high accuracy,FAAS method is feasible for analyzing primary speciation of microelements in G.uralensis.展开更多
[Objective] This study aimed to analyze the contents of trace elements in potatoes from different production areas in Qinghai Province. [Method] By flame atomic absorption spectrometry (FAAS), the contents of variou...[Objective] This study aimed to analyze the contents of trace elements in potatoes from different production areas in Qinghai Province. [Method] By flame atomic absorption spectrometry (FAAS), the contents of various trace elements in potatoes were determined. [Result] Potatoes contain abundant trace elements such as Cu, Zn, Fe, Mn, Ca, K and Mg. To be specific, the contents of Ca, K and Mg were relatively high. [Conclusion] By using FAAS, the relative standard deviation was 1.17%-2.75% and the recovery rate was 97%-99.5%, indicating accurate and reli-able results with high precision.展开更多
基金Supported by National Natural Science Foundation of China(30600806)Science and Technology Project of Higher Education of Ningxia Hui Autonomous Region (NJ0626)~~
文摘[Objective]The aim was to analyze the primary speciation of 6 microelements in Glycyrrhiza uralensis Fisch. and provide theoretical basis for explaining pharmacodynamic principle of liquorice and discussing quality control of liquorice planting. [Method]The 6 elements Cu,Zn,Ca,Fe,Mg and Mn in roots of G.uralensis were extracted based on traditional decoction method and were separated into water-soluble state and suspension state by micro porous filtering film. The elements in water-soluble state were detected by flame atomic adsorption spectrophotometry (FAAS). [Result]The results showed that extractive rates of the elements were in the range of 1.71%-60.06%,and immerse-residue ratio in 0.018 3-1.682 0; the results also indicated that the immerse-residue ratio of Zn was biggest (1.68),Zn played an important medical role and might be considered as the best characteristic element in G.uralensis; the recoveries of the elements were ranged from 95.72% to 103.15% and relative standard deviations (RSD) were less than 2.38%. [Conclusion]Because of its high accuracy,FAAS method is feasible for analyzing primary speciation of microelements in G.uralensis.
文摘[Objective] This study aimed to analyze the contents of trace elements in potatoes from different production areas in Qinghai Province. [Method] By flame atomic absorption spectrometry (FAAS), the contents of various trace elements in potatoes were determined. [Result] Potatoes contain abundant trace elements such as Cu, Zn, Fe, Mn, Ca, K and Mg. To be specific, the contents of Ca, K and Mg were relatively high. [Conclusion] By using FAAS, the relative standard deviation was 1.17%-2.75% and the recovery rate was 97%-99.5%, indicating accurate and reli-able results with high precision.