期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
二甲醚HCCI发动机微量排放物的研究 被引量:5
1
作者 张煜盛 孙海英 +1 位作者 莫春兰 韩健 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第7期78-81,共4页
根据优化气相色谱仪工作条件,对二甲醚均质充量压燃(HCCI)发动机排气中的甲醛和甲酸甲酯进行了检测.通过二甲醚简化反应机理与Fluent的耦合联算,以及结合Woschni传热模型和DME详细反应机理的Chemkin反应动力学数值模拟,对二甲醚HCCI发... 根据优化气相色谱仪工作条件,对二甲醚均质充量压燃(HCCI)发动机排气中的甲醛和甲酸甲酯进行了检测.通过二甲醚简化反应机理与Fluent的耦合联算,以及结合Woschni传热模型和DME详细反应机理的Chemkin反应动力学数值模拟,对二甲醚HCCI发动机的燃烧过程及其微量排放物(甲醛、甲酸和甲酸甲酯)进行了预测分析.结果表明:在一定条件下,甲醛、甲酸和甲酸甲酯存在于排气中,其排放量均随过量空气系数的减小而减小,发动机转速、进气温度和压力对其影响也很大. 展开更多
关键词 二甲醚 微量排放物 均质充量压燃(HCCI) 燃烧反应动力学 数值模拟
下载PDF
乙醇HCCI发动机微量排放物的模拟 被引量:1
2
作者 肖合林 胡艳 文媛媛 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期108-110,123,共4页
为了研究乙醇均质充量压缩点燃(HCCI)发动机在缸内和排气管道中微量排放物CH2O(甲醛)、CH3HCO(乙醛)和HCOOH(甲酸)的形成演变过程,提出了乙醇简化反应机理与FLUENT软件耦合计算的方法,对乙醇HCCI发动机燃烧过程产生的微量排放物在缸内... 为了研究乙醇均质充量压缩点燃(HCCI)发动机在缸内和排气管道中微量排放物CH2O(甲醛)、CH3HCO(乙醛)和HCOOH(甲酸)的形成演变过程,提出了乙醇简化反应机理与FLUENT软件耦合计算的方法,对乙醇HCCI发动机燃烧过程产生的微量排放物在缸内和排气管中的变化和分布进行了分析预测,同时还分析了不同当量燃空比和废气再循环率对甲醛和乙醛排放量的影响.结果表明:甲醛和乙醛是乙醇燃烧反应过程中的低温产物,缸内甲醛和乙醛的最终排放量随着当量燃空比的增加而减小,随着废气再循环率的增大而增加. 展开更多
关键词 均质充量压缩点燃(HCCI)发动机 乙醇 数值模拟 微量排放物 燃烧反应
原文传递
Microbial Biomass Carbon Trends in Black and Red Soils Under Single Straw Application: Effect of Straw Placement, Mineral N Addition and Tillage 被引量:27
3
作者 J. CHILIMA, HUANG CHANGYONG and WU CIFANG College of Natural Resources and Environment, Zhejiang University, Hangzhou 310029 (China) 《Pedosphere》 SCIE CAS CSCD 2002年第1期59-72,共14页
Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. A... Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. Against such a background, a 60-day greenhousesimulation experiment was carried out to study the effects of strawplacement, mineral N source, and tillage on SMBC dynamics in twocontrasting soils, red sol (Ferrasol) and black soil (Acrisol). Thetreatments included straw addition + buried (T1); straw addition +mineral N (T2); and straw addition + tillage (T3). 展开更多
关键词 microibla biomass carobn mineral N soil straw placement TILLAGE
下载PDF
Effect of intensity and duration of freezing on soil microbial biomass,extractable C and N pools,and N2O and CO2 emissions from forest soils in cold temperate region 被引量:2
4
作者 XU XingKai DUAN CunTao +2 位作者 WU HaoHao LI TuanSheng CHENG WeiGuo 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第1期156-169,共14页
Freezing can increase the emissions of carbon dioxide (CO2) and nitrous oxide (N2O) and the release of labile car- bon (C) and nitrogen (N) pools into the soil. However, there is limited knowledge about how bo... Freezing can increase the emissions of carbon dioxide (CO2) and nitrous oxide (N2O) and the release of labile car- bon (C) and nitrogen (N) pools into the soil. However, there is limited knowledge about how both emissions respond differ- ently to soil freezing and their relationships to soil properties. We evaluated the effect of intensity and duration of freezing on the emissions of CO2 and N2O, net N mineralization, microbial biomass, and extractable C and N pools in soils from a mature broadleaf and Korean pine mixed forest and an adjacent secondary white birch forest in northeastern China. These soils had different contents of microbial biomass and bulk density. Intact soil cores of 0-5 cm and 5-10 cm depth sampled from the two temperate forest floors were subjected to -8, -18, and -80℃ freezing treatments for a short (10 d) and long (145 d) duration, and then respectively incubated at 10~C for 21 d. Soil cores, incubated at 10℃ for 21 d without a pretreatment of freezing, served as control. Emissions of N20 and COz after thaw varied with forest type, soil depth, and freezing treatment. The differ- ence could be induced by the soil water-filled pore space (WFPS) during incubation and availability of substrates for N20 and CO2 production, which are released by freezing. A maximum N2O emission following thawing of frozen soils was observed at approximately 80% WFPS, whereas CO2 emission from soils after thaw significantly increased with increasing WFPS. The soil dissolved organic C just after freezing treatment and CO2 emission increased with increase of freezing duration, which paralleled with a decrease in soil microbial biomass C. The cumulative net N mineralization and net ammonification after freezing treatment as well as N2O emission were significantly affected by freezing temperature. The N2O emission was nega- tively correlated to soil pH and bulk density, but positively correlated to soil KzSO4-extractable NO3 -N content and net am- monification. The CO2 emission was positively correlated to the cumulative net N mineralization and net ammonification. From the above results, it can be reasonably concluded that for a wide range of freezing temperature and freezing duration, N2O and CO2 emissions after thaw were associated mainly with the changes in soil net N mineralization and the availability of substrate liberated by freezing as well as other soil properties that influence porosity. 展开更多
关键词 CO2 emission extractable C and N pools FREEZE-THAW microbial biomass N20 emission N mineralization
原文传递
Dynamics of CO_2 Emission and Biochemical Properties of a Sandy Calcareous Soil Amended with Conocarpus Waste and Biochar 被引量:12
5
作者 Mohamed EL-MAHROUKY Ahmed Hamdy EL-NAGGAR +1 位作者 Adel Rabie USMAN Mohammad Al-WABEL 《Pedosphere》 SCIE CAS CSCD 2015年第1期46-56,共11页
Biochar is a carbon-rich product obtained by biomass pyrolysis and considered a mean of carbon sequestration. In this research, a sandy calcareous soil from the Farm of the College of Food & Agriculture Sciences, ... Biochar is a carbon-rich product obtained by biomass pyrolysis and considered a mean of carbon sequestration. In this research, a sandy calcareous soil from the Farm of the College of Food & Agriculture Sciences, King Saud University, Saudi Arabia, was amended with either woody waste of Conocarpus erectus L.(CW) or the biochar(BC) produced from CW at rates of 0(control), 10, 30 and 50 g kg-1. The effects of the amendments on soil p H, dissolved organic carbon(DOC), microbial biomass carbon(MBC), CO2 emission and metabolic quotient(q CO2) of the sandy calcareous soil were studied in a 60-d incubation experiment. The results showed that the addition of CW led to a significant decrease in soil p H compared to the control and the addition of BC. The CO2-C emission rate was higher in the first few days of incubation than when the incubation time progressed. The cumulative CO2-C emission from the soil amended with CW, especially at higher rates, was higher(approximately 3- to 6-fold) than that from the control and the soil amended with BC. The BC-amended soil showed significant increases in CO2-C emission rate during the first days of incubation as compared to the non-amended soil, but the increase in cumulative CO2-C emission was not significant after 60 d of incubation. On the other hand, CW applications resulted in considerably higher cumulative CO2-C emission, MBC and DOC than the control and BC applications. With the exception of 0 day(after 1 h of incubation), both CW and BC applications led to lower values of q CO2 as compared to the control. The power function kinetic model satisfactorily described the cumulative CO2-C emission. Generally, the lowest values of CO2 emission were observed in the soil with BC, suggesting that the contribution of BC to CO2 emission was very small as compared to that of CW. 展开更多
关键词 dissolved organic carbon metabolic quotient microbial biomass carbon power function kinetic model soil pH
原文传递
Generation of electricity from CO_2 mineralization: Principle and realization 被引量:8
6
作者 XIE He Ping WANG Yu Fei +8 位作者 HE Yang GOU Ma Ling LIU Tao WANG Jin Long TANG Liang JIANG Wen ZHANG Ru XIE Ling Zhi LIANG Bin 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第12期2335-2346,共12页
Current CO2 reduction and utilization technologies suffer from high energy consuming. Thus, an energy favourable route is in urgent demanding. CO2 mineralization is theoretically an energy releasing process for CO2 re... Current CO2 reduction and utilization technologies suffer from high energy consuming. Thus, an energy favourable route is in urgent demanding. CO2 mineralization is theoretically an energy releasing process for CO2 reduction and utilization, but an approach to recovery this energy has so far remained elusive. For the first time, here we proposed the principle of harvesting electrical energy directly from CO2 mineralization, and realized an energy output strategz1 for CO2 utilization and reduction via a CO2-mineralization fuel cell (CMFC) system. In this system CO2 and industrial alkaline wastes were used as feedstock, and industrial valuable NaHCO3 was produced concomitantly during the electricity generation. The highest power density of this system reached 5.5 W/m2, higher than many microbial fuel cells. The maximum open circuit voltage reached 0.452 V. Moreo- ver, this system was demonstrated viable to low concentration CO2 (10%) and other carhonation process. Thus, the existing of an energy-generating and environmentally friendly strategy to utilize CO2 as a supplement to the current scenario of CO2 emis- sion control has been demonstrated. 展开更多
关键词 CO2 mineralization electricity generation sodium bicarbonates CO2 utilization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部