By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The res...By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The results show that gas-water distribution styles are divided into continuous phase type and separate phase type. The water lock exists in pore and throat during the process of gas-water displacement, and it reduces the gas flow-rate and has some effects on the recovery efficiency during the operation of gas storage. According to the experimental results of aquifer gas storage in X area, the differences in available extent among reservoirs are significant, and the availability of pore space is 33% 45%.展开更多
Immiscible kerosene-water two-phase flows in microchannels connected by a T-junction were numerically studied by a Lattice Boltzmann (LB) method based on field mediators.The two-phase flow lattice Boltzmann model was ...Immiscible kerosene-water two-phase flows in microchannels connected by a T-junction were numerically studied by a Lattice Boltzmann (LB) method based on field mediators.The two-phase flow lattice Boltzmann model was first validated and improved by several test cases of a still droplet.The five distinct flow regimes of the kerosene-water system,previously identified in the experiments from Zhao et al.,were reproduced.The quantitative and qualitative agreement between the simulations and the experimental data show the effectiveness of the numerical method.The roles of the interfacial tension and contact angle on the flow patterns and shapes of droplets were discussed and highlighted according to the numerical results based on the improved two-phase LB model.This work demonstrated that the developed LBM simulator is a viable tool to study immiscible two-phase flows in microchannels,and such a tool could provide tangible guidance for the design of various microfluidic devices that involve immiscible multi-phase flows.展开更多
Microarray technology has been proved to be greatly helpful for biomedical and biological diagnosis. And the evaluation of its biological applications lies in the detection sensitivity, which requires high intensity a...Microarray technology has been proved to be greatly helpful for biomedical and biological diagnosis. And the evaluation of its biological applications lies in the detection sensitivity, which requires high intensity and stability of the signal. Recently, several nanomaterials, especially semiconductor nanomaterials, due to their excellent fluorescence properties, have been widely used to construct microarrays for biosensors. Here, we presented an approach for constructing CdSe/ZnS quantum dot (QD) microarray in microfluidic channels on a glass slide by photolithography. The conditions for immobilizing stable and uniform QD microarray on the glass slide were optimized. Several types of QD microarrays with different emission wavelengths and modified groups were constructed using silanization and lithography technology. Based on the fluorescence quenching effect of Cu2+ on QDs, the microfluidic chip with QD microarray was applied for the determination of Cu2+. 1 nmol/L Cu2+ could be detected by this method.展开更多
基金Project(2011ZX05013-002)supported by National Science and Technology Major Projects of China
文摘By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The results show that gas-water distribution styles are divided into continuous phase type and separate phase type. The water lock exists in pore and throat during the process of gas-water displacement, and it reduces the gas flow-rate and has some effects on the recovery efficiency during the operation of gas storage. According to the experimental results of aquifer gas storage in X area, the differences in available extent among reservoirs are significant, and the availability of pore space is 33% 45%.
基金supported by Corning Incorporated, the National Natural Science Foundation of China (20990224, 20976177)National Science Fund for Distinguished Young Scholars (21025627)the National Basic Research Program of China (2009CB623406)
文摘Immiscible kerosene-water two-phase flows in microchannels connected by a T-junction were numerically studied by a Lattice Boltzmann (LB) method based on field mediators.The two-phase flow lattice Boltzmann model was first validated and improved by several test cases of a still droplet.The five distinct flow regimes of the kerosene-water system,previously identified in the experiments from Zhao et al.,were reproduced.The quantitative and qualitative agreement between the simulations and the experimental data show the effectiveness of the numerical method.The roles of the interfacial tension and contact angle on the flow patterns and shapes of droplets were discussed and highlighted according to the numerical results based on the improved two-phase LB model.This work demonstrated that the developed LBM simulator is a viable tool to study immiscible two-phase flows in microchannels,and such a tool could provide tangible guidance for the design of various microfluidic devices that involve immiscible multi-phase flows.
基金supported by the National Basic Research Program of China (2011CB933600)the Science Fund for Creative Research Groups (20921062)+1 种基金the National Natural Science Foundation of China (21175100)the Program for New Century Excellent Talents in University (NCET-10-0656)
文摘Microarray technology has been proved to be greatly helpful for biomedical and biological diagnosis. And the evaluation of its biological applications lies in the detection sensitivity, which requires high intensity and stability of the signal. Recently, several nanomaterials, especially semiconductor nanomaterials, due to their excellent fluorescence properties, have been widely used to construct microarrays for biosensors. Here, we presented an approach for constructing CdSe/ZnS quantum dot (QD) microarray in microfluidic channels on a glass slide by photolithography. The conditions for immobilizing stable and uniform QD microarray on the glass slide were optimized. Several types of QD microarrays with different emission wavelengths and modified groups were constructed using silanization and lithography technology. Based on the fluorescence quenching effect of Cu2+ on QDs, the microfluidic chip with QD microarray was applied for the determination of Cu2+. 1 nmol/L Cu2+ could be detected by this method.