目的:初步研究78 k D的葡萄糖调节蛋白(the 78 k D glucose-regulated protein,GRP78)与乙型肝炎病毒(hepatitis B virus,HBV)的前S1蛋白(Pre S1)的相互作用位点。方法:利用PCR技术扩增GRP78的基因,将扩增的目的基因克隆至p W28载体质粒...目的:初步研究78 k D的葡萄糖调节蛋白(the 78 k D glucose-regulated protein,GRP78)与乙型肝炎病毒(hepatitis B virus,HBV)的前S1蛋白(Pre S1)的相互作用位点。方法:利用PCR技术扩增GRP78的基因,将扩增的目的基因克隆至p W28载体质粒,在大肠杆菌(Escherichia coli,E.coli)B834中表达,经过镍离子亲和层析柱纯化GRP78蛋白;将Pre S1 3个截短片段的重组质粒(p GST-Pre S1-X1/X2/X3)在B834中表达后,经过GST亲和层析柱纯化相应蛋白;利用蛋白质体外结合实验(pull down)、微量热泳动(microscale thermophoresis,MST)检测GRP78与Pre S1 3个截短片段的相互作用。结果:成功构建重组质粒p W28-GRP78;获得GRP78蛋白及Pre S1 3个截短片段的融合蛋白;pull down及MST实验验证了GRP78可以与Pre S1的3个片段结合,且GRP78与GST-Pre S1-X1结合效果最好。结论:利用分子克隆技术及蛋白质表达纯化技术,获得GRP78蛋白及Pre S1截短片段的融合蛋白,并初步筛选了Pre S1与GRP78的相互作用位点,为后续研究打基础。展开更多
Accurate characterization of the interactions between biomolecules not only provides fundamental insights into cellular processes but also paves the way for drug discovery and development. With recent increases in thr...Accurate characterization of the interactions between biomolecules not only provides fundamental insights into cellular processes but also paves the way for drug discovery and development. With recent increases in throughput and sensitivity, biophysical technologies have become prominent tools for studying biomolecular interactions. Biophysical techniques that can reduce costs, shorten detection time, simplify the complexity of the system under analysis, and simultaneously provide high-quality data content are particularly favored. Here, we summarize the qualitative and quantitative analysis of biomolecular interactions using Micro Scale Thermophoresis(MST), as well as extend the application of MST functions to explore thermodynamics, enzyme kinetics and protein folding-unfolding processes. MST has emerged as a simple and powerful biophysical approach for identifying and quantifying binding events based on the movement of molecules along microscopic temperature gradients. The advantages of MST over other competitive biophysical techniques include freedom from immobilization, rapid analysis times, lower sample consumption, and the ability to analyze binding affinities in cell lysates. This article discusses the instrumental setups, principles, experimental workflows, and examples of MST application in practice.展开更多
基金This work was supported by State Key Laboratory of Natural and Biomimetic Drugs,Peking University。
文摘Accurate characterization of the interactions between biomolecules not only provides fundamental insights into cellular processes but also paves the way for drug discovery and development. With recent increases in throughput and sensitivity, biophysical technologies have become prominent tools for studying biomolecular interactions. Biophysical techniques that can reduce costs, shorten detection time, simplify the complexity of the system under analysis, and simultaneously provide high-quality data content are particularly favored. Here, we summarize the qualitative and quantitative analysis of biomolecular interactions using Micro Scale Thermophoresis(MST), as well as extend the application of MST functions to explore thermodynamics, enzyme kinetics and protein folding-unfolding processes. MST has emerged as a simple and powerful biophysical approach for identifying and quantifying binding events based on the movement of molecules along microscopic temperature gradients. The advantages of MST over other competitive biophysical techniques include freedom from immobilization, rapid analysis times, lower sample consumption, and the ability to analyze binding affinities in cell lysates. This article discusses the instrumental setups, principles, experimental workflows, and examples of MST application in practice.