Traditional treatments of zinc dross have many disadvantages,such as complicated recovering process and serious environmental pollution.In this work,a new process of chlorine removal from zinc dross by microwave was p...Traditional treatments of zinc dross have many disadvantages,such as complicated recovering process and serious environmental pollution.In this work,a new process of chlorine removal from zinc dross by microwave was proposed for solving problem of recycling the zinc dross.With better ability of absorbing the microwave than zinc oxide,the main material in zinc dross,chlorides,can be heated and evaporated rapidly during microwave roasting.Various parameters including roasting temperature,duration time and stirring speed were optimized.The microstructure of roasted materials was characterized by X-ray diffraction(XRD) and scanning electron microscope(SEM).The content of the chloride was analyzed by the method of chlorine ion selective electrode.The experiments indicate that the best duration time is 60 min with a stirring speed of 15 r/min during the microwave roasting process.The dechlorination rate reaches peak value of 88% at 700 ℃.The chlorine is removed as HCl gas when water vapor is used as activating agent,which means that it can be recovered into hydrochloride acid.展开更多
We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimension...We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierar- chical self-supported nanostructures are composed of one-dimensional (1D) ZnCo204 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo204 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo204 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (-900 mA.h.g-1 at a rate of 45 mA.h.g-1) for Li ion battery electrodes.展开更多
基金Project(51104073) supported by the National Natural Science Foundation of China
文摘Traditional treatments of zinc dross have many disadvantages,such as complicated recovering process and serious environmental pollution.In this work,a new process of chlorine removal from zinc dross by microwave was proposed for solving problem of recycling the zinc dross.With better ability of absorbing the microwave than zinc oxide,the main material in zinc dross,chlorides,can be heated and evaporated rapidly during microwave roasting.Various parameters including roasting temperature,duration time and stirring speed were optimized.The microstructure of roasted materials was characterized by X-ray diffraction(XRD) and scanning electron microscope(SEM).The content of the chloride was analyzed by the method of chlorine ion selective electrode.The experiments indicate that the best duration time is 60 min with a stirring speed of 15 r/min during the microwave roasting process.The dechlorination rate reaches peak value of 88% at 700 ℃.The chlorine is removed as HCl gas when water vapor is used as activating agent,which means that it can be recovered into hydrochloride acid.
文摘We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierar- chical self-supported nanostructures are composed of one-dimensional (1D) ZnCo204 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo204 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo204 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (-900 mA.h.g-1 at a rate of 45 mA.h.g-1) for Li ion battery electrodes.