This paper deals with vacuum UV optical coatings for micro mirror applications. High reflecting low-stress optical coatings have been developed for the next-generation of micro mechanical mirrors. The optimized metal ...This paper deals with vacuum UV optical coatings for micro mirror applications. High reflecting low-stress optical coatings have been developed for the next-generation of micro mechanical mirrors. The optimized metal systems are applicable in the VUV spectral region and can be integrated in the technology of MOEMS, such as spatial light modulators (SLM) and micro scanning mirrors.展开更多
Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope,or into trans-endoscopic probes,a technique now known as confoca...Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope,or into trans-endoscopic probes,a technique now known as confocal endomicroscopy or confocal laser endomicroscopy.This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or "virtual biopsies" of the gastrointestinal mucosa during endoscopy,and has stimulated significant interest in the application of this technique in clinical gastroenterology.This review aims to evaluate the current data on the technical aspects and the utility of this new technology in clinical gastroenterology and its potential impact in the future,particularly in the screening or surveillance of gastrointestinal neoplasia.展开更多
The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of...The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of the image analyses in soil science was a breakthrough. Attempts to make soil thin sections go back to the beginning of the 2oth century. Microscopic techniques and recently high resolution electron microscope and use of computer assisted imaging techniques enabled the in vitro study of soils in three dimensional levels. It is now possible to store and process massive amounts of data. Micro- morphological concepts and techniques are applied in paleopedological, ecological, and archaeological studies. The aim of this work was to examine soil micromorphological imaging in historical perspective.展开更多
To obtain the refined electrodeposited nickel layer on AZ91D magnesium alloy,ultrasonic technology was applied in the processes of pre-treatment and electrodeposition.The phases of pre-treatment layer and the nickel c...To obtain the refined electrodeposited nickel layer on AZ91D magnesium alloy,ultrasonic technology was applied in the processes of pre-treatment and electrodeposition.The phases of pre-treatment layer and the nickel coating were analyzed by X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS),and the microstructure was observed by scanning electron microscopy(SEM).Then,the effects of ultrasonic dispersion on the microstructure of pre-treatment layer and the grain refinement of electrodeposited nickel layer were discussed.The results showed that the pre-treatment electrodeposited Cu-Sn layer with compact microstructure could be synthesized in alkaline copper-tin liquid with ultrasonic agitation,as a result,smooth and refined nickel coating formed on AZ91D magnesium alloy.On the other hand,preferred orientation in the coating decreased because of the refined grains.展开更多
Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19...Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.展开更多
To promote the scale-up production and industrial application of magnesium oxide (MgO) whiskers, MgO whiskers were prepared by the calcination method of the precursor. The precursor MgSO4·5Mg(OH)2·2H2O ...To promote the scale-up production and industrial application of magnesium oxide (MgO) whiskers, MgO whiskers were prepared by the calcination method of the precursor. The precursor MgSO4·5Mg(OH)2·2H2O (152 MOS) single component was prepared by hydrothermal synthesis reaction in MgSO4 solution and NaOH solution. MgO whisker was prepared by heating treatment of the precursor at low heating speed to keep the structure of the precursor not be destroyed. The composition, the morphology and the structure of these whiskers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that the MgO whisker was about 0.5-1.2 μm in diameter and 20-80 μm in length, with an aspect ratio no less than 100.展开更多
We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molec...We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molecules self-assembled on the surface are found critical for locking the nanohybrids into a well-separated state. The STM results indicate that both thiol and carboxylic terminals are effective in this aspect by making strong interaction with the Au portions of the nanohybrids. An argon ion sputtering technique is also proposed to clean up organic contaminants on the surface for improved STM imaging of individual Au-CdSe nanohybrids. These observations help to enrich technical approaches to dispersing individual nanostructures on the surface and provide opportunities to explore their local electroluminescent and energy transfer properties at the nanoscale.展开更多
In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidon...In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidone(NMP) as solvents. The prepared membranes have been characterized by scanning electron microscope(SEM), and fourier transforms infrared spectroscopy(FTIR). The scanning electron microscope results prove that the prepared membranes are smooth and their pores are distributed throughout the whole surface and bulk body of the membrane without any visible cracks. The stress–strain mechanical test showed an excellent mechanical behavior enhanced by the presence of PVP in the prepared membranes. The membranes performance results showed that the salt rejection reached 98% with a high flux. This, in turn, makes the prepared membranes can be applied for sea and brackish water treatment through membrane distillation technology.展开更多
Dip-pen nanolithography is a new scanning probe lithography (SPL) technique based on atomic force microscopy (AFM), and now has made a great progress. The process of dip-pen lithography involves the adsorption of ink ...Dip-pen nanolithography is a new scanning probe lithography (SPL) technique based on atomic force microscopy (AFM), and now has made a great progress. The process of dip-pen lithography involves the adsorption of ink molecules on AFM tip, the formation of water meniscus, the transport of ink molecules, and diffusion of ink molecules on the substrate. More factors such as temperature, humidity, tip, scanning speed and so on will influence the process of dip-pen lithography. The paper analyzes in detail the mechanism of this technique, introduces synthetically the latest development, including electrochemical DPN, more-mode DPN, multiple DPN, multi-probe array DPN and so on. Finally, the paper describes the characteristics and the application of DPN.展开更多
Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical micro...Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions.展开更多
Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperatu...Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperature, pressure and components) on the VD3 loading in VDP were studied. At the optimum conditions of pressure of 8.0 MPa, temperature of 45 ℃, and the mass ratio of 15.0% between VD3 and HPC, the VD3 loading reached 12.89%. VD3 liposomes (VDL) were obtained by hydrating VDP and the entrapment efficiency of VD3 in VDL reached 98.5%. The morphology and structure of VDP and VDL were characterized by SEM (scanning electron micro-scope), TEM (transmission electron microscope) and XRD (X-ray diffractometer). The structure of VD3 nanoparti-cles in HPC matrix was formed. The size of VDL with an average diameter of about 1μm was determined by dynamic light scattering instrument (DLS). The results indicated that VDP can be made by SAS and VDL with high entrapment efficiency can be formed easily via the hydration of VDP.展开更多
In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's ...In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.展开更多
This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory s...This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory schemes of the natural phenomena and formulated predictions of the course of the definite natural events on the basis of mathematics and experimental data, and on the other, as in the engineering sciences are constructed not only the projects of the new experimental situations but also structural schemes of the new nanosystem unknown in nature and technology. The operation of nanotheory is realized by the iteration method. At first a special engineering problem is formulated. Then it is represented in the form of the structural scheme of the nanosystem which is transformed into the idea about the natural process reflecting its performance. To calculate and mathematically model this process a functional scheme is constructed. Consequently, the engineering problem is reformulated into a scientific one and then into a mathematical problem solved by the deductive method. This path from the bottom to the top represents the analysis of schemes (the bottom up approach). The way in the opposite direction--the synthesis of schemes (the top down approach)--makes it possible to synthesize the ideal model of a new nanosystem from idealized structural elements, according to the appropriate rules of deductive transformation, to calculate basic parameters of the nanosystem and simulate its function. Nanotechnology is at the same time a field of scientific knowledge and a sphere of engineering activity, in other words--nanotechnoscience--similar with systems engineering as the analysis and design of large-scale, complex, man-machine systems, but now as micro- and nanosystems. Scanning tunneling microscope in the nanoexperiment is not only an arrangement of scientific investigation but also at the same time a facility to fabricate the electrically conducting bridges between an electrode and the selected nanotubes and computer modeling and the design of different artifacts.展开更多
Silver nanoparticles (Ag-NPs) were prepared using an electrochemical technique. The optical properties were measured by absorption spectroscopy. The dimension of the prepared nanoparticles as estimated by the Atomic...Silver nanoparticles (Ag-NPs) were prepared using an electrochemical technique. The optical properties were measured by absorption spectroscopy. The dimension of the prepared nanoparticles as estimated by the Atomic Force Microscope (AFM), was 91.57 nm. This reaserch effort proposes a mechanism for reducing the size of silver nanoparticles by adding the hydrogen peroxide (H202), and protecting the silver nanoparticle to inhibit agglomeration by adding PVP polymer.展开更多
Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were ch...Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were characterized by BET (Brunauer Emmett Teller), XRD (X-ray diffractometer), SEM (scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) to understand the surface area, phase, structure, morphology and electrical conductivity of the respective electrode material. The surface area was obtained as 2.312 m2"g"l and 0.892 m2"g"1, respectively for 12% of activated carbon in the expander of negative and 0.70% of TiO2 (Titanium dioxide) in the PAM (positive active material). The structural analysis reveals an increase in the tetrabasic lead sulfate and also evidenced by well grown crystals in the PAM with the TiO2, respectively obtained by XRD and SEM techniques. The impedance spectra analysis shows an increase of electrical conductivity of negative active mass with temperature. The battery results showing two fold enhancements in the charge acceptance were attributed to the high surface area activated carbon in the NAM (negative active material). The materials properties of electrodes and their influence on the battery performance were discussed.展开更多
This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful me...This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems.展开更多
The developmental process of Myeloma cells under a digital optical microscope has been inspected and monitored by using time-lapsed recording technique. Myeloma cells were cultured in medium contained 20% and 50% of F...The developmental process of Myeloma cells under a digital optical microscope has been inspected and monitored by using time-lapsed recording technique. Myeloma cells were cultured in medium contained 20% and 50% of Fetal Bovine Serum (FBS), respectively. Inspection and monitoring for 6 hours showed the effect of the FBS to mobility, proliferation rate, and development of cell cycle phases of Myeloma cells. Using time-lapsed data, the speed of cells was 3.5-6.0 pm/s when using FBS 20% and increased to 5.0-8.0 p.m/s when using FBS 50%. The rate of cells decreases from 2 cells/hr when using FBS 20% to 1/6 cells/br when using FBS 50%. The cells division process is signified by the change in gray level and it took every 50-70 minutes.展开更多
Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(...Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.展开更多
文摘This paper deals with vacuum UV optical coatings for micro mirror applications. High reflecting low-stress optical coatings have been developed for the next-generation of micro mechanical mirrors. The optimized metal systems are applicable in the VUV spectral region and can be integrated in the technology of MOEMS, such as spatial light modulators (SLM) and micro scanning mirrors.
文摘Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope,or into trans-endoscopic probes,a technique now known as confocal endomicroscopy or confocal laser endomicroscopy.This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or "virtual biopsies" of the gastrointestinal mucosa during endoscopy,and has stimulated significant interest in the application of this technique in clinical gastroenterology.This review aims to evaluate the current data on the technical aspects and the utility of this new technology in clinical gastroenterology and its potential impact in the future,particularly in the screening or surveillance of gastrointestinal neoplasia.
文摘The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of the image analyses in soil science was a breakthrough. Attempts to make soil thin sections go back to the beginning of the 2oth century. Microscopic techniques and recently high resolution electron microscope and use of computer assisted imaging techniques enabled the in vitro study of soils in three dimensional levels. It is now possible to store and process massive amounts of data. Micro- morphological concepts and techniques are applied in paleopedological, ecological, and archaeological studies. The aim of this work was to examine soil micromorphological imaging in historical perspective.
文摘To obtain the refined electrodeposited nickel layer on AZ91D magnesium alloy,ultrasonic technology was applied in the processes of pre-treatment and electrodeposition.The phases of pre-treatment layer and the nickel coating were analyzed by X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS),and the microstructure was observed by scanning electron microscopy(SEM).Then,the effects of ultrasonic dispersion on the microstructure of pre-treatment layer and the grain refinement of electrodeposited nickel layer were discussed.The results showed that the pre-treatment electrodeposited Cu-Sn layer with compact microstructure could be synthesized in alkaline copper-tin liquid with ultrasonic agitation,as a result,smooth and refined nickel coating formed on AZ91D magnesium alloy.On the other hand,preferred orientation in the coating decreased because of the refined grains.
文摘Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.
文摘To promote the scale-up production and industrial application of magnesium oxide (MgO) whiskers, MgO whiskers were prepared by the calcination method of the precursor. The precursor MgSO4·5Mg(OH)2·2H2O (152 MOS) single component was prepared by hydrothermal synthesis reaction in MgSO4 solution and NaOH solution. MgO whisker was prepared by heating treatment of the precursor at low heating speed to keep the structure of the precursor not be destroyed. The composition, the morphology and the structure of these whiskers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that the MgO whisker was about 0.5-1.2 μm in diameter and 20-80 μm in length, with an aspect ratio no less than 100.
文摘We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molecules self-assembled on the surface are found critical for locking the nanohybrids into a well-separated state. The STM results indicate that both thiol and carboxylic terminals are effective in this aspect by making strong interaction with the Au portions of the nanohybrids. An argon ion sputtering technique is also proposed to clean up organic contaminants on the surface for improved STM imaging of individual Au-CdSe nanohybrids. These observations help to enrich technical approaches to dispersing individual nanostructures on the surface and provide opportunities to explore their local electroluminescent and energy transfer properties at the nanoscale.
文摘In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidone(NMP) as solvents. The prepared membranes have been characterized by scanning electron microscope(SEM), and fourier transforms infrared spectroscopy(FTIR). The scanning electron microscope results prove that the prepared membranes are smooth and their pores are distributed throughout the whole surface and bulk body of the membrane without any visible cracks. The stress–strain mechanical test showed an excellent mechanical behavior enhanced by the presence of PVP in the prepared membranes. The membranes performance results showed that the salt rejection reached 98% with a high flux. This, in turn, makes the prepared membranes can be applied for sea and brackish water treatment through membrane distillation technology.
基金Foundation of Education of Zhejiang Province, China ( No.20060470).
文摘Dip-pen nanolithography is a new scanning probe lithography (SPL) technique based on atomic force microscopy (AFM), and now has made a great progress. The process of dip-pen lithography involves the adsorption of ink molecules on AFM tip, the formation of water meniscus, the transport of ink molecules, and diffusion of ink molecules on the substrate. More factors such as temperature, humidity, tip, scanning speed and so on will influence the process of dip-pen lithography. The paper analyzes in detail the mechanism of this technique, introduces synthetically the latest development, including electrochemical DPN, more-mode DPN, multiple DPN, multi-probe array DPN and so on. Finally, the paper describes the characteristics and the application of DPN.
基金Project(61391) supported by the National Security Basic Research Program of ChinaProject (91016029) supported by the National Natural Science Foundation of China
文摘Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions.
基金Supported by the National High Technology Research and Development Program of China (2007AA 10Z350) and the National Natural Science Foundation of China (20976103).
文摘Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperature, pressure and components) on the VD3 loading in VDP were studied. At the optimum conditions of pressure of 8.0 MPa, temperature of 45 ℃, and the mass ratio of 15.0% between VD3 and HPC, the VD3 loading reached 12.89%. VD3 liposomes (VDL) were obtained by hydrating VDP and the entrapment efficiency of VD3 in VDL reached 98.5%. The morphology and structure of VDP and VDL were characterized by SEM (scanning electron micro-scope), TEM (transmission electron microscope) and XRD (X-ray diffractometer). The structure of VD3 nanoparti-cles in HPC matrix was formed. The size of VDL with an average diameter of about 1μm was determined by dynamic light scattering instrument (DLS). The results indicated that VDP can be made by SAS and VDL with high entrapment efficiency can be formed easily via the hydration of VDP.
基金Key Project(50436010, U0834002) supported by the National Natural Science Foundation of ChinaProjects(50675070, 50705031) supported by the National Natural Science Foundation of China+1 种基金Project(8151064101000058) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(E200909) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.
文摘This paper discusses the methodological specialty of the theoretical investigation in the nanotechnology. In the nanotechnoscience, on the one hand, similar with the classical natural science are created explanatory schemes of the natural phenomena and formulated predictions of the course of the definite natural events on the basis of mathematics and experimental data, and on the other, as in the engineering sciences are constructed not only the projects of the new experimental situations but also structural schemes of the new nanosystem unknown in nature and technology. The operation of nanotheory is realized by the iteration method. At first a special engineering problem is formulated. Then it is represented in the form of the structural scheme of the nanosystem which is transformed into the idea about the natural process reflecting its performance. To calculate and mathematically model this process a functional scheme is constructed. Consequently, the engineering problem is reformulated into a scientific one and then into a mathematical problem solved by the deductive method. This path from the bottom to the top represents the analysis of schemes (the bottom up approach). The way in the opposite direction--the synthesis of schemes (the top down approach)--makes it possible to synthesize the ideal model of a new nanosystem from idealized structural elements, according to the appropriate rules of deductive transformation, to calculate basic parameters of the nanosystem and simulate its function. Nanotechnology is at the same time a field of scientific knowledge and a sphere of engineering activity, in other words--nanotechnoscience--similar with systems engineering as the analysis and design of large-scale, complex, man-machine systems, but now as micro- and nanosystems. Scanning tunneling microscope in the nanoexperiment is not only an arrangement of scientific investigation but also at the same time a facility to fabricate the electrically conducting bridges between an electrode and the selected nanotubes and computer modeling and the design of different artifacts.
文摘Silver nanoparticles (Ag-NPs) were prepared using an electrochemical technique. The optical properties were measured by absorption spectroscopy. The dimension of the prepared nanoparticles as estimated by the Atomic Force Microscope (AFM), was 91.57 nm. This reaserch effort proposes a mechanism for reducing the size of silver nanoparticles by adding the hydrogen peroxide (H202), and protecting the silver nanoparticle to inhibit agglomeration by adding PVP polymer.
文摘Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were characterized by BET (Brunauer Emmett Teller), XRD (X-ray diffractometer), SEM (scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) to understand the surface area, phase, structure, morphology and electrical conductivity of the respective electrode material. The surface area was obtained as 2.312 m2"g"l and 0.892 m2"g"1, respectively for 12% of activated carbon in the expander of negative and 0.70% of TiO2 (Titanium dioxide) in the PAM (positive active material). The structural analysis reveals an increase in the tetrabasic lead sulfate and also evidenced by well grown crystals in the PAM with the TiO2, respectively obtained by XRD and SEM techniques. The impedance spectra analysis shows an increase of electrical conductivity of negative active mass with temperature. The battery results showing two fold enhancements in the charge acceptance were attributed to the high surface area activated carbon in the NAM (negative active material). The materials properties of electrodes and their influence on the battery performance were discussed.
文摘This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems.
文摘The developmental process of Myeloma cells under a digital optical microscope has been inspected and monitored by using time-lapsed recording technique. Myeloma cells were cultured in medium contained 20% and 50% of Fetal Bovine Serum (FBS), respectively. Inspection and monitoring for 6 hours showed the effect of the FBS to mobility, proliferation rate, and development of cell cycle phases of Myeloma cells. Using time-lapsed data, the speed of cells was 3.5-6.0 pm/s when using FBS 20% and increased to 5.0-8.0 p.m/s when using FBS 50%. The rate of cells decreases from 2 cells/hr when using FBS 20% to 1/6 cells/br when using FBS 50%. The cells division process is signified by the change in gray level and it took every 50-70 minutes.
基金Project(51274247) supported by the National Natural Science Foundation of ChinaProject(2014zzts177) support by the Fundamental Research Funds for the Central Universities,China
文摘Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.