期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LMD和模式识别的矿山微震信号特征提取及分类方法
被引量:
12
1
作者
李伟
《煤炭学报》
EI
CAS
CSCD
北大核心
2017年第5期1156-1164,共9页
针对岩体破裂信号与爆破振动信号难以自动识别的问题,提出了基于局部均值分解(LMD)和模式识别的矿山微震信号特征提取及分类方法。首先采用LMD对微震信号进行自适应分解得到乘积函数(PF)分量,再利用相关系数和方差贡献率筛选得到PF主分...
针对岩体破裂信号与爆破振动信号难以自动识别的问题,提出了基于局部均值分解(LMD)和模式识别的矿山微震信号特征提取及分类方法。首先采用LMD对微震信号进行自适应分解得到乘积函数(PF)分量,再利用相关系数和方差贡献率筛选得到PF主分量,进而计算各主分量的相关系数和能谱系数,并以此作为模式识别的特征向量。结果表明:LMD、经验模态分解(EMD)和离散小波变化(DWT)的主分量分别为PF1~PF6,IMF1~IMF6和D2~D7,其中IMFi(i=1,2,…,6)为EMD分解的本征模态分量,Dj(j=2,3,…,7)为DWT分解的细节分量;LMD主分量分类识别结果整体上优于EMD和DWT主分量分类识别结果;能谱系数分类结果整体上优于相关系数分类结果,人工神经网络(ANN)和支持向量机(SVM)识别效果明显优于逻辑回归(LR)和Bayes判别法识别结果,且基于LMD能谱系数的SVM分类准确率达到了93.0%。
展开更多
关键词
微震信号分类
特征提取
局部均值分解
模式识别
能谱系数
下载PDF
职称材料
题名
基于LMD和模式识别的矿山微震信号特征提取及分类方法
被引量:
12
1
作者
李伟
机构
黑龙江科技大学黑龙江省普通高校采矿工程重点实验室
黑龙江科技大学矿业工程学院
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
2017年第5期1156-1164,共9页
基金
黑龙江省普通高等学校采矿工程重点实验室开放课题资助项目(2014KF04)
黑龙江省自然科学基金面上资助项目(E2016061)
文摘
针对岩体破裂信号与爆破振动信号难以自动识别的问题,提出了基于局部均值分解(LMD)和模式识别的矿山微震信号特征提取及分类方法。首先采用LMD对微震信号进行自适应分解得到乘积函数(PF)分量,再利用相关系数和方差贡献率筛选得到PF主分量,进而计算各主分量的相关系数和能谱系数,并以此作为模式识别的特征向量。结果表明:LMD、经验模态分解(EMD)和离散小波变化(DWT)的主分量分别为PF1~PF6,IMF1~IMF6和D2~D7,其中IMFi(i=1,2,…,6)为EMD分解的本征模态分量,Dj(j=2,3,…,7)为DWT分解的细节分量;LMD主分量分类识别结果整体上优于EMD和DWT主分量分类识别结果;能谱系数分类结果整体上优于相关系数分类结果,人工神经网络(ANN)和支持向量机(SVM)识别效果明显优于逻辑回归(LR)和Bayes判别法识别结果,且基于LMD能谱系数的SVM分类准确率达到了93.0%。
关键词
微震信号分类
特征提取
局部均值分解
模式识别
能谱系数
Keywords
microseismicsignal classification
feature extraction
local mean decomposition ( LMD )
pattern recognition
energy spectrum coefficient
分类号
TD324 [矿业工程—矿井建设]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LMD和模式识别的矿山微震信号特征提取及分类方法
李伟
《煤炭学报》
EI
CAS
CSCD
北大核心
2017
12
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部