An inner seepage face phenomenon is given and a numerical simulation procedure has been developed.It may appear at the interface of two materials when an unconfined seepage flows from a porous media to a coarser porou...An inner seepage face phenomenon is given and a numerical simulation procedure has been developed.It may appear at the interface of two materials when an unconfined seepage flows from a porous media to a coarser porous media with a higher permeability.Inaccuracy and divergent problems may arise both in a saturated-only and in a variably saturated analysis while an inner seepage face is not simulated with a special procedure.The position of the seepage face is determined during the nonlinear iteration process and the flux of the inner seepage face nodes is transferred to the downstream side nodes.Validity and efficiency of the procedure are illustrated by the simulation of two dimensional steady state seepage examples of heterogeneous zoned dams which is usually used to validate algorithms.An analysis of a three-dimensional earth core rockfill dam is also presented here.The procedure can also be applied to general transient seepage problems.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10932012)the China-Europe Science and Technology Cooperation Program (Grant No. 0820)European Commission(Grant No. FP7-NMP-2007-LARGE-1)
文摘An inner seepage face phenomenon is given and a numerical simulation procedure has been developed.It may appear at the interface of two materials when an unconfined seepage flows from a porous media to a coarser porous media with a higher permeability.Inaccuracy and divergent problems may arise both in a saturated-only and in a variably saturated analysis while an inner seepage face is not simulated with a special procedure.The position of the seepage face is determined during the nonlinear iteration process and the flux of the inner seepage face nodes is transferred to the downstream side nodes.Validity and efficiency of the procedure are illustrated by the simulation of two dimensional steady state seepage examples of heterogeneous zoned dams which is usually used to validate algorithms.An analysis of a three-dimensional earth core rockfill dam is also presented here.The procedure can also be applied to general transient seepage problems.