In order to improve the lower practical capacity and bad cyclability of crystalline V2O5(c-V2O5),the vanadium oxide(V2O5) and polypyrrole(PPy) hybrid with hollow-spherical(HS) structure was studied.HS nanocomp...In order to improve the lower practical capacity and bad cyclability of crystalline V2O5(c-V2O5),the vanadium oxide(V2O5) and polypyrrole(PPy) hybrid with hollow-spherical(HS) structure was studied.HS nanocomposite comprised of conductive polypyrrole and vanadium pentoxide(PPy/V2O5) was synthesized by polymerization of pyrrole monomer(Py) in the hollow-microspherical V2O5 host.This novel hybrid was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and tested as the cathode material for lithium-ion batteries(LIB) by galvanostatic cell cycling and electrochemical impedance spectroscopy(EIS).The hollow-spherical polypyrrole/vanadium oxide(HS-PPy/V2O5) composites,in which PPy molecules are intercalated between the layers of V2O5,exhibit slight reduced capacity and substantially improve cyclability and electrochemical activity compared with the pure HS-V2O5.展开更多
By using monthly historical sea surface temperature (SST) data for the yearsfrom 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied inthis paper. The analysis of WPWP centroid (WP...By using monthly historical sea surface temperature (SST) data for the yearsfrom 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied inthis paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Nino-3 region SSTanomalies(SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Nino-3 regionSSTA, which suggests that a 9° anomaly of the zonal displacement from the climatological positionof the WPWPC corresponds to about a 1℃ anomaly in the Nino-3 region area-mean SST. This studyconnects the WPWPC zonal displacement with the Nino-3 SSTA, and it may be helpful in betterunderstanding the fact that the WPWP eastward extension is conducive to the Nino-3 region SSTincrease during an El Nino-Southern Oscillation (ENSO) event.展开更多
Numerous published results have showr the importance of the Wcstern Pacific Warm Pool (WPWP)surface centroid movement in ENSO-(EI Nino/Southcrn Oscillation)rclated studies .Howcver,some rccent research conclusions...Numerous published results have showr the importance of the Wcstern Pacific Warm Pool (WPWP)surface centroid movement in ENSO-(EI Nino/Southcrn Oscillation)rclated studies .Howcver,some rccent research conclusions make it necessary to clarify the differenccs of the currently exicing two types of WPWP surface centroid:the geometric centroid and the thermal (heat)centrold.This study analyzes the physical backgrounds of the two typcs of centroid and points out their differenccs.which suggest that different types of ccntroid may scrve different study purposes.This study also shows that the ‘geometric center’of WPWP.actually a close approximation to the mass ccntroid,is more related to the Nino-3 region sca surfacc temperaturc(SST)ancmaly and can also be regarded as an important indicator of ENSO events.展开更多
A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCI flux. Characterization by X-ray diffraction and scanning electro...A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCI flux. Characterization by X-ray diffraction and scanning electron microscopy confirmed its structure and proved that the as-prepared powder is constituted of small, homogenously sized hollow spheres (1-1.5 μm). The material exhibited enhanced rate capability and high first cycle efficiency due to the good dispersion of secondary particles. Galvanostatic cycling at different temperatures (20, 40, and 60 ℃) and a current rate of 2 C (500 mA.g-1) showed no significant capacity fade.展开更多
Carbon-sulfur composites as the cathode of rechargeable Li-S batteries have shown outstanding electrochemical performance for high power devices. Here, we report the promising electrochemical charge-discharge properti...Carbon-sulfur composites as the cathode of rechargeable Li-S batteries have shown outstanding electrochemical performance for high power devices. Here, we report the promising electrochemical charge-discharge properties of a carbon-sulfur composite, in which sulfur is impregnated in porous hollow carbon spheres (PHCSs) via a melt-diffusion method. Instrumental analysis shows that the PHCSs, which were prepared by a facile template strategy, are characterized by high specific surface area (1520 m2.g 1), large pore volume (2.61 cm^3·g^-1), broad pore size distribution from micropores to mesopores, and high electronic conductivity (2.22 S·cm-1). The carbon-sulfur composite with a sulfur content of 50.2 wt.% displays an initial discharge capacity of 1450 mA.h·g^-1 (which is 86.6% of the theoretical specific capacity) and a reversible discharge capacity of 1357 mA.h·g^-1 after 50 cycles at 0.05 C charge-discharge rate. At a higher rate of 0.5 C, the capacity stabilized at around 800 mA-h·g^-1 after 30 cycles. The results illustrate that the porous carbon-sulfur composites with hierarchically porous structure have potential application as the cathode of Li-S batteries because of their effective improvement of the electronic conductivity, the repression of the volume expansion, and the reduction of the shuttling loss.展开更多
Tin-based nanomaterials have been extensively explored as high-capacity anode materials for lithium ion batteries(LIBs). However,the large volume changes upon repeated cycling always cause the pulverization of the e...Tin-based nanomaterials have been extensively explored as high-capacity anode materials for lithium ion batteries(LIBs). However,the large volume changes upon repeated cycling always cause the pulverization of the electrode materials. Herein,we report the fabrication of uniform SnS_2@C hollow microspheres from hydrothermally prepared SnO_2@C hollow microspheres by a solid-state sulfurization process. The as-prepared hollow SnS_2@C microspheres with unique carbon shell,as electrodes in LIBs,exhibit high reversible capacity of 814 mA h g^(-1) at a current density of 100 mA g^(-1),good cycling performance(783 mA h g^(-1) for 200 cycles maintained with an average degradation rate of 0.02% per cycle) and remarkable rate capability(reversible capabilities of 433 mA h g^(-1)at 2C). The hollow space could serve as extra space for volume expansion during the charge-discharge cycling,while the carbon shell can ensure the structural integrity of the microspheres. The preeminent electrochemical performances of the SnS_2@C electrodes demonstrate their promising application as anode materials in the next-generation LIBs.展开更多
The design scheme of a sandwich-structure betavoltaic microbattery based on silicon using63Ni is presented in this paper.This structure differs from a monolayer energy conversion unit.The optimization of various physi...The design scheme of a sandwich-structure betavoltaic microbattery based on silicon using63Ni is presented in this paper.This structure differs from a monolayer energy conversion unit.The optimization of various physical parameters and the effects of temperature on the microbattery were studied through MCNP.For the proposed optimization design,P-type silicon was used as the substrate for the betavoltaic microbattery.Based on the proposed theory,a sandwich microbattery with a shallow junction was fabricated.The temperature dependence of the device was also measured.The open-circuit voltaic(Voc)temperature dependence of the optimized sandwich betavoltaic microbattery was linear.However,the Voc of the betavoltaic microbattery with a high-resistance substrate exponentially decreased over the range of room temperature in the experiment and simulation.In addition,the sandwich betavoltaic microbattery offered higher power than the monolayer betavoltaic one.The results of this paper provide a significant technical reference for optimizing the design and studying temperature effects on betavoltaics of the same type.展开更多
SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and t...SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and transmission electron microscopy show that the as-obtained SnO2 hollow spheres have a wall thickness of about 50 nm,and consist of nanosized SnO2 particles with a mean diameter of about 15 nm.Electrochemical measurements indicate that the SnO2 hollow spheres exhibit improved electrochemical performance in terms of specific capacity and rate capability in comparison with commercial SnO2 when used as anode materials for lithium-ion batteries.The enhanced performance may be attributed to the spherical and hollow structure,as well as the building blocks of SnO2 nanoparticles.展开更多
基金Project(50574063)supported by the National Natural Science Foundation of China
文摘In order to improve the lower practical capacity and bad cyclability of crystalline V2O5(c-V2O5),the vanadium oxide(V2O5) and polypyrrole(PPy) hybrid with hollow-spherical(HS) structure was studied.HS nanocomposite comprised of conductive polypyrrole and vanadium pentoxide(PPy/V2O5) was synthesized by polymerization of pyrrole monomer(Py) in the hollow-microspherical V2O5 host.This novel hybrid was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and tested as the cathode material for lithium-ion batteries(LIB) by galvanostatic cell cycling and electrochemical impedance spectroscopy(EIS).The hollow-spherical polypyrrole/vanadium oxide(HS-PPy/V2O5) composites,in which PPy molecules are intercalated between the layers of V2O5,exhibit slight reduced capacity and substantially improve cyclability and electrochemical activity compared with the pure HS-V2O5.
文摘By using monthly historical sea surface temperature (SST) data for the yearsfrom 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied inthis paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Nino-3 region SSTanomalies(SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Nino-3 regionSSTA, which suggests that a 9° anomaly of the zonal displacement from the climatological positionof the WPWPC corresponds to about a 1℃ anomaly in the Nino-3 region area-mean SST. This studyconnects the WPWPC zonal displacement with the Nino-3 SSTA, and it may be helpful in betterunderstanding the fact that the WPWP eastward extension is conducive to the Nino-3 region SSTincrease during an El Nino-Southern Oscillation (ENSO) event.
基金This study has been supported by the Doctoral Startup Foundation of 0cean University of China(2003)partly by the Natural Science Foundation of China(No.40506035).The author is thankful to the NCDC for the SST data.The author also thanks the reviewers for their very valuable suggestions.
文摘Numerous published results have showr the importance of the Wcstern Pacific Warm Pool (WPWP)surface centroid movement in ENSO-(EI Nino/Southcrn Oscillation)rclated studies .Howcver,some rccent research conclusions make it necessary to clarify the differenccs of the currently exicing two types of WPWP surface centroid:the geometric centroid and the thermal (heat)centrold.This study analyzes the physical backgrounds of the two typcs of centroid and points out their differenccs.which suggest that different types of ccntroid may scrve different study purposes.This study also shows that the ‘geometric center’of WPWP.actually a close approximation to the mass ccntroid,is more related to the Nino-3 region sca surfacc temperaturc(SST)ancmaly and can also be regarded as an important indicator of ENSO events.
文摘A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCI flux. Characterization by X-ray diffraction and scanning electron microscopy confirmed its structure and proved that the as-prepared powder is constituted of small, homogenously sized hollow spheres (1-1.5 μm). The material exhibited enhanced rate capability and high first cycle efficiency due to the good dispersion of secondary particles. Galvanostatic cycling at different temperatures (20, 40, and 60 ℃) and a current rate of 2 C (500 mA.g-1) showed no significant capacity fade.
文摘Carbon-sulfur composites as the cathode of rechargeable Li-S batteries have shown outstanding electrochemical performance for high power devices. Here, we report the promising electrochemical charge-discharge properties of a carbon-sulfur composite, in which sulfur is impregnated in porous hollow carbon spheres (PHCSs) via a melt-diffusion method. Instrumental analysis shows that the PHCSs, which were prepared by a facile template strategy, are characterized by high specific surface area (1520 m2.g 1), large pore volume (2.61 cm^3·g^-1), broad pore size distribution from micropores to mesopores, and high electronic conductivity (2.22 S·cm-1). The carbon-sulfur composite with a sulfur content of 50.2 wt.% displays an initial discharge capacity of 1450 mA.h·g^-1 (which is 86.6% of the theoretical specific capacity) and a reversible discharge capacity of 1357 mA.h·g^-1 after 50 cycles at 0.05 C charge-discharge rate. At a higher rate of 0.5 C, the capacity stabilized at around 800 mA-h·g^-1 after 30 cycles. The results illustrate that the porous carbon-sulfur composites with hierarchically porous structure have potential application as the cathode of Li-S batteries because of their effective improvement of the electronic conductivity, the repression of the volume expansion, and the reduction of the shuttling loss.
基金supported by the National Natural Science Foundation of China (51302323)the Program for New Century Excellent Talents in University (NCET-13-0594)the Innovationdriven Project of Central South University (2017CX001)
文摘Tin-based nanomaterials have been extensively explored as high-capacity anode materials for lithium ion batteries(LIBs). However,the large volume changes upon repeated cycling always cause the pulverization of the electrode materials. Herein,we report the fabrication of uniform SnS_2@C hollow microspheres from hydrothermally prepared SnO_2@C hollow microspheres by a solid-state sulfurization process. The as-prepared hollow SnS_2@C microspheres with unique carbon shell,as electrodes in LIBs,exhibit high reversible capacity of 814 mA h g^(-1) at a current density of 100 mA g^(-1),good cycling performance(783 mA h g^(-1) for 200 cycles maintained with an average degradation rate of 0.02% per cycle) and remarkable rate capability(reversible capabilities of 433 mA h g^(-1)at 2C). The hollow space could serve as extra space for volume expansion during the charge-discharge cycling,while the carbon shell can ensure the structural integrity of the microspheres. The preeminent electrochemical performances of the SnS_2@C electrodes demonstrate their promising application as anode materials in the next-generation LIBs.
基金supported by the National Natural Science Foundation of China(Grant No.11205088)the Aeronautical Science Foundation of China(Grant No.2012ZB52021)+1 种基金the Funding of Jiangsu Innovation Program for Graduate Education(Grant No.CXZZ12_0146)Fundamental Research Funds for the Central Universities
文摘The design scheme of a sandwich-structure betavoltaic microbattery based on silicon using63Ni is presented in this paper.This structure differs from a monolayer energy conversion unit.The optimization of various physical parameters and the effects of temperature on the microbattery were studied through MCNP.For the proposed optimization design,P-type silicon was used as the substrate for the betavoltaic microbattery.Based on the proposed theory,a sandwich microbattery with a shallow junction was fabricated.The temperature dependence of the device was also measured.The open-circuit voltaic(Voc)temperature dependence of the optimized sandwich betavoltaic microbattery was linear.However,the Voc of the betavoltaic microbattery with a high-resistance substrate exponentially decreased over the range of room temperature in the experiment and simulation.In addition,the sandwich betavoltaic microbattery offered higher power than the monolayer betavoltaic one.The results of this paper provide a significant technical reference for optimizing the design and studying temperature effects on betavoltaics of the same type.
基金supported by the National Natural Science Foundation of China (21121063)the National Key Project on Basic Research(2011CB935700 and 2009CB930400)the Chinese Academy of Sciences
文摘SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and transmission electron microscopy show that the as-obtained SnO2 hollow spheres have a wall thickness of about 50 nm,and consist of nanosized SnO2 particles with a mean diameter of about 15 nm.Electrochemical measurements indicate that the SnO2 hollow spheres exhibit improved electrochemical performance in terms of specific capacity and rate capability in comparison with commercial SnO2 when used as anode materials for lithium-ion batteries.The enhanced performance may be attributed to the spherical and hollow structure,as well as the building blocks of SnO2 nanoparticles.