期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于生理信号的危险作业人员心理负荷识别研究
1
作者 郝锐 郑欣 李怡霖 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期600-608,共9页
为识别危险作业岗位作业人员的心理负荷,提高人机系统可靠性,以含能材料起爆作业诱导被试人员心理负荷,采集30名被试人员在静息状态和心理负荷下的心率、脑电图和眼动信号进行心理负荷识别研究.首先,采用配对t检验与秩和检验对采集的心... 为识别危险作业岗位作业人员的心理负荷,提高人机系统可靠性,以含能材料起爆作业诱导被试人员心理负荷,采集30名被试人员在静息状态和心理负荷下的心率、脑电图和眼动信号进行心理负荷识别研究.首先,采用配对t检验与秩和检验对采集的心率、脑电图和眼动信号进行统计分析,8种脑电、3种眼动及9种心率特征在静息状态和心理负荷下具有显著变化;其次,对初选获得的生理指标分别采用Pearson相关分析、最大相关最小冗余(MRMR)算法和主成分分析(PCA)进行特征降维;最后,基于上述3种方法降维处理后得到生理指标采用Logistic Regression,KNN,SVM,XG-Boost,Decision Tree和Random Forest机器学习方法进行心理负荷识别.结果表明,基于MRMR的心理负荷特征选择结果,采用Random Forest机器学习方法具有更好的识别性能(ACC=0.917,SN=1.0,SP=0.857,F1=0.909,AUC=0.971).本研究为有效识别危险作业人员心理负荷提供了理论依据. 展开更多
关键词 危险作业 心理负荷识别 生理信号 机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部