PGC-1α, a potent transcriptional coactivator, is the major regulator of mitochondrial biogenesis and activity in the cardiac muscle. The dysregulation of PGC-la and its target genes has been reported to be associated...PGC-1α, a potent transcriptional coactivator, is the major regulator of mitochondrial biogenesis and activity in the cardiac muscle. The dysregulation of PGC-la and its target genes has been reported to be associated with congenital and acquired heart diseases. By examining myocardium samples from patients with Tetralogy of Fallot, we show here that PGC-1α expression levels are markedly increased in patients compared with healthy controls and positively correlated with the severity of cyanosis. Furthermore, hypoxia significantly induced the expression of PGC-1α and mitochondrial biogenesis in cultured cardiac myocytes. Mechanistic studies suggest that hypoxia-induced PGC-1α expression is regulated through the AMPK signaling pathway. Together, our data indicate that hypoxia can stimulate the expression of PGC-1α and mitochondrial biogenesis in the cardiac myocytes, and this process might provide a potential adaptive mechanism for cardiac myocytes to increase ATP output and minimize hypoxic damage to the heart.展开更多
基金Supplementary information is linked to the online version of the paper on the Cell Research website. Acknowledgments We thank Yun Luo, Jia Jia and Dr Yun Xu at Nanjing University, Nanjing, China, for their scientific discussions and experimental assistance. This work was supported by grants from the National Natural Science Foundation of China (Nos. 30871195, 90813035, 30890044), the National Basic Research Program of China (Nos. 2006CB503909, 2004CB518603), the "111" Project, the Hi-Tech Research and Development Program of China (No. 2006AA02A112,), and the Natural Science Foundation of Jiangsu Province (Nos. BK2004082, BK2006714, BK2008021).
文摘PGC-1α, a potent transcriptional coactivator, is the major regulator of mitochondrial biogenesis and activity in the cardiac muscle. The dysregulation of PGC-la and its target genes has been reported to be associated with congenital and acquired heart diseases. By examining myocardium samples from patients with Tetralogy of Fallot, we show here that PGC-1α expression levels are markedly increased in patients compared with healthy controls and positively correlated with the severity of cyanosis. Furthermore, hypoxia significantly induced the expression of PGC-1α and mitochondrial biogenesis in cultured cardiac myocytes. Mechanistic studies suggest that hypoxia-induced PGC-1α expression is regulated through the AMPK signaling pathway. Together, our data indicate that hypoxia can stimulate the expression of PGC-1α and mitochondrial biogenesis in the cardiac myocytes, and this process might provide a potential adaptive mechanism for cardiac myocytes to increase ATP output and minimize hypoxic damage to the heart.