Background Atrial fibrillation (AF) causes a continuum of atrial anatomical remodeling. Methods Using a library of perfusion-fixed human hearts, specimens with AF were compared to controls. During this preliminary a...Background Atrial fibrillation (AF) causes a continuum of atrial anatomical remodeling. Methods Using a library of perfusion-fixed human hearts, specimens with AF were compared to controls. During this preliminary assessment study, direct measurements were taken of atrial volume, pulmonary vein (PV) circumference, and left atrial (LA) wall thicknesses. Results Hearts with AF typically had larger atrial volumes, as well as a much larger variation in volume compared to controls (range of 59.6-227.1 mL in AF hearts compared to 65.1-115.9 mL in controls). For all hearts, right PVs were larger than left PVs (mean: 171.4 ± 84.6 mm^2 for right and 1182 ± 50.1 mm^2 for left, P 〈 0.005). LA wall thicknesses ranged from 0.7 mm to 3.1 mm for both AF and control hearts. Conclusions Hearts with AF had a large range of sizes which is consistent with the progression of atrial remodeling during AF. The large range of thicknesses will influence the amount of energy needed to create transmural lesions during ablation procedures.展开更多
文摘Background Atrial fibrillation (AF) causes a continuum of atrial anatomical remodeling. Methods Using a library of perfusion-fixed human hearts, specimens with AF were compared to controls. During this preliminary assessment study, direct measurements were taken of atrial volume, pulmonary vein (PV) circumference, and left atrial (LA) wall thicknesses. Results Hearts with AF typically had larger atrial volumes, as well as a much larger variation in volume compared to controls (range of 59.6-227.1 mL in AF hearts compared to 65.1-115.9 mL in controls). For all hearts, right PVs were larger than left PVs (mean: 171.4 ± 84.6 mm^2 for right and 1182 ± 50.1 mm^2 for left, P 〈 0.005). LA wall thicknesses ranged from 0.7 mm to 3.1 mm for both AF and control hearts. Conclusions Hearts with AF had a large range of sizes which is consistent with the progression of atrial remodeling during AF. The large range of thicknesses will influence the amount of energy needed to create transmural lesions during ablation procedures.