[Objective] This study aimed to establish a real-time PCR method for de- tecting stx2 gene in Shiga toxin-producing E. coli (STEC). [Method] According to the known STEC stx2 gene sequences published in GenBank, PCR ...[Objective] This study aimed to establish a real-time PCR method for de- tecting stx2 gene in Shiga toxin-producing E. coli (STEC). [Method] According to the known STEC stx2 gene sequences published in GenBank, PCR primers and probes were designed based on the conserved region to construct recombinant plasmid as a positive template, thus optimizing the reaction conditions and establishing the real- time PCR method. [Result] A standard curve was established based on the opti- mized real-time PCR system, indicting a good linear correlation between the initial template concentration and Ct value, with the correlation coefficient F^e of above 0.995. The established method had a good specificity, without non-specific amplifica- tion for 10 non-STEC intestinal bacterial strains; the detection limit of initial template was 1.0x102 copies/μI, indicating a high sensitivity; furthermore, the coefficients of variation within and among batches were lower than 1% and 5% respectively, sug- gesting a good repeatability. [Conclusion] In this study, a real-time PCR method was successfully established for detecting STEC stx2 gene, which provided technical means for rapid detection of STEC in samples.展开更多
基金Supported by Agricultural Science and Technology Support Program(Social Development)of Jiangsu Province(BE2011771)~~
文摘[Objective] This study aimed to establish a real-time PCR method for de- tecting stx2 gene in Shiga toxin-producing E. coli (STEC). [Method] According to the known STEC stx2 gene sequences published in GenBank, PCR primers and probes were designed based on the conserved region to construct recombinant plasmid as a positive template, thus optimizing the reaction conditions and establishing the real- time PCR method. [Result] A standard curve was established based on the opti- mized real-time PCR system, indicting a good linear correlation between the initial template concentration and Ct value, with the correlation coefficient F^e of above 0.995. The established method had a good specificity, without non-specific amplifica- tion for 10 non-STEC intestinal bacterial strains; the detection limit of initial template was 1.0x102 copies/μI, indicating a high sensitivity; furthermore, the coefficients of variation within and among batches were lower than 1% and 5% respectively, sug- gesting a good repeatability. [Conclusion] In this study, a real-time PCR method was successfully established for detecting STEC stx2 gene, which provided technical means for rapid detection of STEC in samples.