Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time ...Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time coded multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Because there are three different forgetting factor scenarios including adaptive, two-step and conventional ones applied to RLS channel estimation, this paper describes the principle of RLS channel estimation and analyzes the impact of different forgetting factor scenarios on the performances of RLS channel estimation. Simulation results proved that the RLS algorithm with adaptive forgetting factor (RLS-A) outperformed that with two-step forgetting factor (RLS-T) or with conventional forgetting factor (RLS-C) in both estimation accuracy and robustness over the multiple-input multiple-output (MIMO) channel, i.e., a wide-sense stationary uncorrelated scattering (WSSUS) and frequency-selective slowly fading channel. Hence, we can employ the RLS-A method by adjusting forgetting factor adaptively to track and estimate channel state parameters successfully in space-time coded MIMO-OFDM systems.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60272079), and the Hi-Tech Research and Development Program (863) of China (No. 2003AA123310)
文摘Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time coded multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Because there are three different forgetting factor scenarios including adaptive, two-step and conventional ones applied to RLS channel estimation, this paper describes the principle of RLS channel estimation and analyzes the impact of different forgetting factor scenarios on the performances of RLS channel estimation. Simulation results proved that the RLS algorithm with adaptive forgetting factor (RLS-A) outperformed that with two-step forgetting factor (RLS-T) or with conventional forgetting factor (RLS-C) in both estimation accuracy and robustness over the multiple-input multiple-output (MIMO) channel, i.e., a wide-sense stationary uncorrelated scattering (WSSUS) and frequency-selective slowly fading channel. Hence, we can employ the RLS-A method by adjusting forgetting factor adaptively to track and estimate channel state parameters successfully in space-time coded MIMO-OFDM systems.