针对传统视觉即时定位与建图(simultaneous localization and mapping,SLAM)算法的环境静态假设在高动态场景下不成立,导致无法实现准确定位的问题,通过在视觉SLAM前端引入语义模块、优化动态特征点剔除策略,构建动态鲁棒的相机自定位...针对传统视觉即时定位与建图(simultaneous localization and mapping,SLAM)算法的环境静态假设在高动态场景下不成立,导致无法实现准确定位的问题,通过在视觉SLAM前端引入语义模块、优化动态特征点剔除策略,构建动态鲁棒的相机自定位系统。引入YOLOv4识别动态和静态目标,根据特征点与动、静态目标框的位置关系及动态点占比将所有特征点划分为动态和静态,将动态点从定位算法中剔除。为准确评估算法有效性,构建复杂城市道路场景数据集,实验结果表明,该方法能有效抑制动态目标给相机自定位带来的不利影响,在多段图像序列中实现更低的定位误差,提升相机的定位精度和运动轨迹准确性。展开更多
文摘针对传统视觉即时定位与建图(simultaneous localization and mapping,SLAM)算法的环境静态假设在高动态场景下不成立,导致无法实现准确定位的问题,通过在视觉SLAM前端引入语义模块、优化动态特征点剔除策略,构建动态鲁棒的相机自定位系统。引入YOLOv4识别动态和静态目标,根据特征点与动、静态目标框的位置关系及动态点占比将所有特征点划分为动态和静态,将动态点从定位算法中剔除。为准确评估算法有效性,构建复杂城市道路场景数据集,实验结果表明,该方法能有效抑制动态目标给相机自定位带来的不利影响,在多段图像序列中实现更低的定位误差,提升相机的定位精度和运动轨迹准确性。