The influence of thermal treatment on Si 1-x Ge x/Si multiple-quantum wells (MQW) p-i-n photodiodes has been investigated by photocurrent spectroscopy combined with X-ray double crystal dif...The influence of thermal treatment on Si 1-x Ge x/Si multiple-quantum wells (MQW) p-i-n photodiodes has been investigated by photocurrent spectroscopy combined with X-ray double crystal diffraction.The cutoff wavelength is significantly reduced due to the Si-Ge interdiffusion and partial relaxation of the strained SiGe alloy.The values of the blue shift increase slowly with the annealing temperatures in the range of 750℃ to 850℃.However,the nonlinear changes in photocurrent intensities of the samples annealed at different temperatures have been observed,which is mainly dominated by the generation of misfit dislocations and the reduction of the point defects in the heating process.展开更多
The effect of rapid thermal annealing (RTA) ambient on denuded zone and oxygen precipitates in Czochralski (CZ) silicon wafers is studied in this paper. N2 and a N2/NH3 mixture are used as RTA ambient. It is demon...The effect of rapid thermal annealing (RTA) ambient on denuded zone and oxygen precipitates in Czochralski (CZ) silicon wafers is studied in this paper. N2 and a N2/NH3 mixture are used as RTA ambient. It is demonstrated that a high density of oxygen precipitates and thin denuded zone are obtained in N2/NH3 ambient,while a relatively lower density of oxygen precipitates and thicker denuded zone are observed in N2 ambient. As the RTA duration times increased, the oxygen precipitate density increased and the denuded zone depth decreased. X-ray photoelectron spectroscopy (XPS) data and atomic force microscope (AFM) results show that there RTA process,which can explain the different effect of RTA was a surface nitriding reaction during the N2/NH3 ambient ambient.展开更多
Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in...Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in decreasing Al matrix hardness, dissolving of needle-like eutectic Si phase, precipitation and growth of supersaturated Si atoms, and spheroidisation of primary Si phase. Compactibility of the alloy powders is gradually improved with increasing the annealing temperature to 400 ℃. However, it decreases when the temperature is above 400 ℃ owing to the existence of Si-Si phase clusters and the densely distributed Si particles. A maximum relative density of 96.1% is obtained after annealing at 400 ℃ for 4 h. In addition, the deviation of compactibility among the pre-annealed powders reaches a maximum at a pressure of 175 MPa. Therefore, a proper pre-annealing treatment can significantly enhance the cold compactibility of gas-atomized Al-Si alloy powders.展开更多
Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic ...Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.展开更多
WT8.BZ]The effects of postgrowth rapid thermal annealing have been studied on the optical properties of 3-nm-height InAs/GaAs quantum dots covered by 3-nm-thick In xGa 1-x As (x=0,0 1 and 0 2) overgrowth layer...WT8.BZ]The effects of postgrowth rapid thermal annealing have been studied on the optical properties of 3-nm-height InAs/GaAs quantum dots covered by 3-nm-thick In xGa 1-x As (x=0,0 1 and 0 2) overgrowth layer.At a higher annealing temperature (T≥750℃),the photoluminescence peak of InGaAs layer has been observed at the lower-energy side of InAs quantum-dot peak.In addition,a similar blueshift in photoluminescence (PL) emission energy is observed for all samples when the annealing temperature increases from 650 to 850℃.However,the trend of photoluminescence linewidth towards narrowing is totally different for InAs quantum dots with different In mole fraction in InGaAs overgrowth layer.The results suggest that the intermixing in the lateral direction plays an important role in obtaining a better understanding of the modification of optical properties induced by the rapid thermal annealing.展开更多
The morphous silicon films prepared by PECVD at substrate temperatures of 30℃ have been crystallized by rapid thermal annealing method, the budget of time-temperature in the annealing process is 600℃ for 120s, 850℃...The morphous silicon films prepared by PECVD at substrate temperatures of 30℃ have been crystallized by rapid thermal annealing method, the budget of time-temperature in the annealing process is 600℃ for 120s, 850℃ for 120s, and 950℃ for 120s. The results indicate the crystallization at 850℃ and 950℃ are better as shown in micro-Raman scattering and scanning electronic microscope.展开更多
Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annea...Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annealing process to stabilize nitrogen‐mesoporous carbon supported Pd single‐atom/cluster(Pd/NMC)material,which provided a catalyst with superior performance for Suzuki coupling reactions.In comparison with commercial palladium/carbon(Pd/C)catalysts,the Pd/NMC catalyst exhibited significantly boosted activity(100%selectivity and 95%yield)and excellent stability(almost no decay in activity after 10 reuse cycles)for the Suzuki coupling reactions of chlorobenzenes,together with superior yield and excellent selectivity in the fields of the board scope of the reactants.Moreover,our newly developed rapid annealing process of precursor solutions is applied as a generalized method to stabilize metal clusters(e.g.Pd,Pt,Ru),opening new possibilities in the construction of efficient highly dispersed metal atom and sub‐nanometer cluster catalysts with high performance.展开更多
Cu−0.15Zr(wt.%)alloy with uniform and fine microstructure was fabricated by rapid solidification followed by hot forging.Evolution of microstructure,mechanical properties and electrical conductivity of the alloy durin...Cu−0.15Zr(wt.%)alloy with uniform and fine microstructure was fabricated by rapid solidification followed by hot forging.Evolution of microstructure,mechanical properties and electrical conductivity of the alloy during elevated-temperature annealing were investigated.The alloy exhibits good thermal stability,and its strength decreases slightly even after annealing at 700℃ for 2 h.The nano-sized Cu_(5)Zr precipitates show significant pinning effect on dislocation moving,which is the main reason for the high strength of the alloy.Additionally,the large-size Cu_(5)Zr precipitates play a major role in retarding grain growth by pinning the grain boundaries during annealing.After annealing at 700℃ for 2 h,the electrical conductivity of samples reaches the peak value of 88%(IACS),which is attributed to the decrease of vacancy defects,dislocations,grain boundaries and Zr solutes.展开更多
In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is ...In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.展开更多
In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position inf...In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.展开更多
The effect of rapid thermal annealing on the optical properties of astrained InAs/InP single quantum well structrure has been investigated in this paper.The luminescence intensity of the quantum well at 8 K was increa...The effect of rapid thermal annealing on the optical properties of astrained InAs/InP single quantum well structrure has been investigated in this paper.The luminescence intensity of the quantum well at 8 K was increased by a factor of 4 and 1.55 meV blue shift of the quantum well photoluminescence peak was observed after annealing at the optimal condition of 700℃ for 5 s. Furthermore,we found that the luminescence efficiency of the deep radiative levels in the samples was also affected by rapid thermal annealing.Our experimental results have demonstrated that Rapid thermal annealing significantly improves the crystalline quality of strained quantum well structures after growth and is an important way for enhancement of the performance of the laser device.展开更多
The relationship between the arrangement of tungsten-halogen lamps and the uniformity of irradiance received by the wafer is discussed, and a sort of axial-symmetrical lamps-array is designed to guarantee that the irr...The relationship between the arrangement of tungsten-halogen lamps and the uniformity of irradiance received by the wafer is discussed, and a sort of axial-symmetrical lamps-array is designed to guarantee that the irradiation on the edge is approximately the same as the one on the center of the wafer. The magnitude of temperature on the wafer vs. the power of tungsten-halogen lamps is calculated numerically.展开更多
CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers.The effects of TiO2 volume fraction on the microstructure and magnetic properties of the nanocomposite films were stud...CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers.The effects of TiO2 volume fraction on the microstructure and magnetic properties of the nanocomposite films were studied.Results showed that the ordering and texture of the L10-CoPt particles did not change with TiO2 content up to 76 vol.% of TiO2.However,the volume of the L10-CoPt particles in the film decreased with an increase in TiO2 content.Increasing TiO2 content effectively reduced the coalescence of magnetic grains when TiO2 content was larger than 56 vol.%.Both the out-of-plane coercivity and remanence ratio of the film decreased slightly with TiO2 content,but the in-plane coercivity and remanence ratio of the film decreased firstly and then increased after TiO2 content was larger than 56 vol.%.The reduction in the coercivity of the film should be due to the reduction in the size of the L10-CoPt particles.The reduction in remanence ratio might be due to the weakening of the exchange coupling strength between the magnetic grains when TiO2 content was increased,as indicated by the MFM images.展开更多
In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal anne...In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal annealing(RTA).The characterizations show that the epitaxial SiGe thin films are single-crystalline with uniform tensile strain and then become polycrystalline after the ion implantation and following RTA.The magnetization measurements indicate that the annealed thin films exhibit Mn concentration-dependent ferromagnetism up to 309 K and the X-ray magnetic circular dichroism characterizations reveal the spin and orbital magnetic moments from the substitutional Mn element.To minimize the influence of anomalous Hall effect,magneto-transport measurements at a high magnetic field up to 31 T at 300 K are performed to obtain the hole mobility,which reaches a record-high value of~1230 cm^(2)V^(-1)s^(-1),owing to the crystalline quality and tensile strain-induced energy band modulation of the samples.The first demonstration of Mn-doped SiGe thin films with roomtemperature ferromagnetism and high carrier mobility may pave the way for practical semiconductor spintronic applications.展开更多
Free-standing metallic nanostructures are considered to be highly relevant to many branches of science and technology with applications of three dimensional metallic nanostructures ranging from optical reflectors,actu...Free-standing metallic nanostructures are considered to be highly relevant to many branches of science and technology with applications of three dimensional metallic nanostructures ranging from optical reflectors,actuators,and antenna,to free-standing electrodes,mechanical,optical,and electrical resonators and sensors.Strain-induced out-of-plane fabrication has emerged as an effective method which uses relaxation of strain-mismatched materials.In this work,we report a study of the thermal annealing-induced shape modification of free-standing nanostructures,which was achieved by introducing compositional or microstructural nonuniformity to the nanowires.In particular gradient,segmented and striped hetero-nanowires were grown by focused-ion-beam-induced chemical vapor deposition,followed by rapid thermal annealing in a N2 atmosphere.Various free-standing nanostructures were produced as a result of the crystalline/grain growth and stress relief.展开更多
文摘The influence of thermal treatment on Si 1-x Ge x/Si multiple-quantum wells (MQW) p-i-n photodiodes has been investigated by photocurrent spectroscopy combined with X-ray double crystal diffraction.The cutoff wavelength is significantly reduced due to the Si-Ge interdiffusion and partial relaxation of the strained SiGe alloy.The values of the blue shift increase slowly with the annealing temperatures in the range of 750℃ to 850℃.However,the nonlinear changes in photocurrent intensities of the samples annealed at different temperatures have been observed,which is mainly dominated by the generation of misfit dislocations and the reduction of the point defects in the heating process.
文摘The effect of rapid thermal annealing (RTA) ambient on denuded zone and oxygen precipitates in Czochralski (CZ) silicon wafers is studied in this paper. N2 and a N2/NH3 mixture are used as RTA ambient. It is demonstrated that a high density of oxygen precipitates and thin denuded zone are obtained in N2/NH3 ambient,while a relatively lower density of oxygen precipitates and thicker denuded zone are observed in N2 ambient. As the RTA duration times increased, the oxygen precipitate density increased and the denuded zone depth decreased. X-ray photoelectron spectroscopy (XPS) data and atomic force microscope (AFM) results show that there RTA process,which can explain the different effect of RTA was a surface nitriding reaction during the N2/NH3 ambient ambient.
基金Project(JPPT-125-GJGG-14-016)supported by Military Supporting Projects of National Defense Science and Technology Industry Committee,China
文摘Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in decreasing Al matrix hardness, dissolving of needle-like eutectic Si phase, precipitation and growth of supersaturated Si atoms, and spheroidisation of primary Si phase. Compactibility of the alloy powders is gradually improved with increasing the annealing temperature to 400 ℃. However, it decreases when the temperature is above 400 ℃ owing to the existence of Si-Si phase clusters and the densely distributed Si particles. A maximum relative density of 96.1% is obtained after annealing at 400 ℃ for 4 h. In addition, the deviation of compactibility among the pre-annealed powders reaches a maximum at a pressure of 175 MPa. Therefore, a proper pre-annealing treatment can significantly enhance the cold compactibility of gas-atomized Al-Si alloy powders.
基金Project Supported by National Natural Science Foundation of China ( Grant No.59671 0 51 ) and by National HighTechnology Resea
文摘Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.
文摘WT8.BZ]The effects of postgrowth rapid thermal annealing have been studied on the optical properties of 3-nm-height InAs/GaAs quantum dots covered by 3-nm-thick In xGa 1-x As (x=0,0 1 and 0 2) overgrowth layer.At a higher annealing temperature (T≥750℃),the photoluminescence peak of InGaAs layer has been observed at the lower-energy side of InAs quantum-dot peak.In addition,a similar blueshift in photoluminescence (PL) emission energy is observed for all samples when the annealing temperature increases from 650 to 850℃.However,the trend of photoluminescence linewidth towards narrowing is totally different for InAs quantum dots with different In mole fraction in InGaAs overgrowth layer.The results suggest that the intermixing in the lateral direction plays an important role in obtaining a better understanding of the modification of optical properties induced by the rapid thermal annealing.
文摘The morphous silicon films prepared by PECVD at substrate temperatures of 30℃ have been crystallized by rapid thermal annealing method, the budget of time-temperature in the annealing process is 600℃ for 120s, 850℃ for 120s, and 950℃ for 120s. The results indicate the crystallization at 850℃ and 950℃ are better as shown in micro-Raman scattering and scanning electronic microscope.
文摘Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annealing process to stabilize nitrogen‐mesoporous carbon supported Pd single‐atom/cluster(Pd/NMC)material,which provided a catalyst with superior performance for Suzuki coupling reactions.In comparison with commercial palladium/carbon(Pd/C)catalysts,the Pd/NMC catalyst exhibited significantly boosted activity(100%selectivity and 95%yield)and excellent stability(almost no decay in activity after 10 reuse cycles)for the Suzuki coupling reactions of chlorobenzenes,together with superior yield and excellent selectivity in the fields of the board scope of the reactants.Moreover,our newly developed rapid annealing process of precursor solutions is applied as a generalized method to stabilize metal clusters(e.g.Pd,Pt,Ru),opening new possibilities in the construction of efficient highly dispersed metal atom and sub‐nanometer cluster catalysts with high performance.
基金The authors are grateful for the financial supports from the Ministry of Science and Technology of China(No.2017YFB0305701).
文摘Cu−0.15Zr(wt.%)alloy with uniform and fine microstructure was fabricated by rapid solidification followed by hot forging.Evolution of microstructure,mechanical properties and electrical conductivity of the alloy during elevated-temperature annealing were investigated.The alloy exhibits good thermal stability,and its strength decreases slightly even after annealing at 700℃ for 2 h.The nano-sized Cu_(5)Zr precipitates show significant pinning effect on dislocation moving,which is the main reason for the high strength of the alloy.Additionally,the large-size Cu_(5)Zr precipitates play a major role in retarding grain growth by pinning the grain boundaries during annealing.After annealing at 700℃ for 2 h,the electrical conductivity of samples reaches the peak value of 88%(IACS),which is attributed to the decrease of vacancy defects,dislocations,grain boundaries and Zr solutes.
基金the National Science Foundation of China(No.42074136 and U19B2008)the Major National Science and Technology Projects(No.2016ZX05027004-001 and 2016ZX05002-005-009)+1 种基金the Fundamental Research Funds for the Central Universities(No.19CX02007A)China Postdoctoral Science Foundation(No.2020M672170).
文摘In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.
基金Projects(40804027,41074085) supported by the National Natural Science Foundation of ChinaProject(09JJ3048) supported by the Natural Science Foundation of Hunan Province,ChinaProject(200805331082) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.
文摘The effect of rapid thermal annealing on the optical properties of astrained InAs/InP single quantum well structrure has been investigated in this paper.The luminescence intensity of the quantum well at 8 K was increased by a factor of 4 and 1.55 meV blue shift of the quantum well photoluminescence peak was observed after annealing at the optimal condition of 700℃ for 5 s. Furthermore,we found that the luminescence efficiency of the deep radiative levels in the samples was also affected by rapid thermal annealing.Our experimental results have demonstrated that Rapid thermal annealing significantly improves the crystalline quality of strained quantum well structures after growth and is an important way for enhancement of the performance of the laser device.
基金Foundationfor Key Youth Teachers from Hunan Province(521105237) Natural Science Foundation of HunanUniversity(521101805)
文摘The relationship between the arrangement of tungsten-halogen lamps and the uniformity of irradiance received by the wafer is discussed, and a sort of axial-symmetrical lamps-array is designed to guarantee that the irradiation on the edge is approximately the same as the one on the center of the wafer. The magnitude of temperature on the wafer vs. the power of tungsten-halogen lamps is calculated numerically.
基金supported by the Agency for Science, Technology and Research (ASTAR) Singapore (Grant No. 062-101-0021)FRC of NUS (Grant No. R-284-000-053-112)
文摘CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers.The effects of TiO2 volume fraction on the microstructure and magnetic properties of the nanocomposite films were studied.Results showed that the ordering and texture of the L10-CoPt particles did not change with TiO2 content up to 76 vol.% of TiO2.However,the volume of the L10-CoPt particles in the film decreased with an increase in TiO2 content.Increasing TiO2 content effectively reduced the coalescence of magnetic grains when TiO2 content was larger than 56 vol.%.Both the out-of-plane coercivity and remanence ratio of the film decreased slightly with TiO2 content,but the in-plane coercivity and remanence ratio of the film decreased firstly and then increased after TiO2 content was larger than 56 vol.%.The reduction in the coercivity of the film should be due to the reduction in the size of the L10-CoPt particles.The reduction in remanence ratio might be due to the weakening of the exchange coupling strength between the magnetic grains when TiO2 content was increased,as indicated by the MFM images.
基金supported by the National Key Research and Development Program of China(2017YFB0405702)the National Natural Science Foundation of China(52172272)。
文摘In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal annealing(RTA).The characterizations show that the epitaxial SiGe thin films are single-crystalline with uniform tensile strain and then become polycrystalline after the ion implantation and following RTA.The magnetization measurements indicate that the annealed thin films exhibit Mn concentration-dependent ferromagnetism up to 309 K and the X-ray magnetic circular dichroism characterizations reveal the spin and orbital magnetic moments from the substitutional Mn element.To minimize the influence of anomalous Hall effect,magneto-transport measurements at a high magnetic field up to 31 T at 300 K are performed to obtain the hole mobility,which reaches a record-high value of~1230 cm^(2)V^(-1)s^(-1),owing to the crystalline quality and tensile strain-induced energy band modulation of the samples.The first demonstration of Mn-doped SiGe thin films with roomtemperature ferromagnetism and high carrier mobility may pave the way for practical semiconductor spintronic applications.
基金supported by the Outstanding Technical Talent Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.91123004,11104334,50825206,10834012 and 60801043)
文摘Free-standing metallic nanostructures are considered to be highly relevant to many branches of science and technology with applications of three dimensional metallic nanostructures ranging from optical reflectors,actuators,and antenna,to free-standing electrodes,mechanical,optical,and electrical resonators and sensors.Strain-induced out-of-plane fabrication has emerged as an effective method which uses relaxation of strain-mismatched materials.In this work,we report a study of the thermal annealing-induced shape modification of free-standing nanostructures,which was achieved by introducing compositional or microstructural nonuniformity to the nanowires.In particular gradient,segmented and striped hetero-nanowires were grown by focused-ion-beam-induced chemical vapor deposition,followed by rapid thermal annealing in a N2 atmosphere.Various free-standing nanostructures were produced as a result of the crystalline/grain growth and stress relief.