In order to reduce the storage amount for the sparse coefficient matrix in pre-corrected fast Fourier transform (P-FFT) or fitting the Green function fast Fourier transform (FG-FFT), the real coefficients are solv...In order to reduce the storage amount for the sparse coefficient matrix in pre-corrected fast Fourier transform (P-FFT) or fitting the Green function fast Fourier transform (FG-FFT), the real coefficients are solved by improving the solution method of the coefficient equations. The novel method in both P-FFT and FG-FFT for the electric field integral equation (EFIE) is employed. With the proposed method, the storage amount for the sparse coefficient matrix can be reduced to the same level as that in the adaptive integral method (AIM) or the integral equation fast Fourier transform (IE-FFT). Meanwhile, the new algorithms do not increase the number of the FFTs used in a matrix-vector product, and maintain almost the same level of accuracy as the original versions. Besides, in respect of the time cost in each iteration, the new algorithms have also the same level as AIM (or IE- FFF). The numerical examples demonstrate the advantages of the proposed method.展开更多
In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be a...In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.展开更多
To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the...To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.展开更多
We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical ...We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.展开更多
We present novel vector permutation and branch reduction methods to minimize the number of execution cycles for bit reversal algorithms.The new methods are applied to single instruction multiple data(SIMD) parallel im...We present novel vector permutation and branch reduction methods to minimize the number of execution cycles for bit reversal algorithms.The new methods are applied to single instruction multiple data(SIMD) parallel implementation of complex data floating-point fast Fourier transform(FFT).The number of operational clock cycles can be reduced by an average factor of 3.5 by using our vector permutation methods and by 1.1 by using our branch reduction methods,compared with conventional im-plementations.Experiments on MPC7448(a well-known SIMD reduced instruction set computing processor) demonstrate that our optimal bit-reversal algorithm consistently takes fewer than two cycles per element in complex array operations.展开更多
基金The National Basic Research Program of China(973Program)(No.2013CB329002)
文摘In order to reduce the storage amount for the sparse coefficient matrix in pre-corrected fast Fourier transform (P-FFT) or fitting the Green function fast Fourier transform (FG-FFT), the real coefficients are solved by improving the solution method of the coefficient equations. The novel method in both P-FFT and FG-FFT for the electric field integral equation (EFIE) is employed. With the proposed method, the storage amount for the sparse coefficient matrix can be reduced to the same level as that in the adaptive integral method (AIM) or the integral equation fast Fourier transform (IE-FFT). Meanwhile, the new algorithms do not increase the number of the FFTs used in a matrix-vector product, and maintain almost the same level of accuracy as the original versions. Besides, in respect of the time cost in each iteration, the new algorithms have also the same level as AIM (or IE- FFF). The numerical examples demonstrate the advantages of the proposed method.
基金Project(60904090) supported by the National Natural Science Foundation of China
文摘In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.
基金supported by grants from the National Natural Science Foundation of China (No.51076144)the Major Special Project of Technology Office in Zhejiang Province (No.2011C11073, No.2011C16038)
文摘To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.
基金supported by National Natural Science Foundation of China (Grant Nos. 40874020, 40474012 and 40821062)National R&D Special Fund for Public Welfare Industry (Grant No. 20070804)
文摘We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.
文摘We present novel vector permutation and branch reduction methods to minimize the number of execution cycles for bit reversal algorithms.The new methods are applied to single instruction multiple data(SIMD) parallel implementation of complex data floating-point fast Fourier transform(FFT).The number of operational clock cycles can be reduced by an average factor of 3.5 by using our vector permutation methods and by 1.1 by using our branch reduction methods,compared with conventional im-plementations.Experiments on MPC7448(a well-known SIMD reduced instruction set computing processor) demonstrate that our optimal bit-reversal algorithm consistently takes fewer than two cycles per element in complex array operations.