期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向大规模数据的DBSCAN加速算法综述 被引量:3
1
作者 陈叶旺 曹海露 +3 位作者 陈谊 康昭 雷震 杜吉祥 《计算机研究与发展》 EI CSCD 北大核心 2023年第9期2028-2047,共20页
DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目... DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目标上看,这些工作大体上可分为减少冗余计算和并行化两大类;就具体加速手段而言,可分为6个主要类别:基于分布式、基于采样化、基于近似模糊、基于快速近邻、基于空间划分以及基于GPU加速技术.根据该分类,对现有工作进行了深入梳理与交叉比较,发现采用多重技术的融合加速算法优于单一加速技术;近似模糊化、并行化与分布式是当前最有效的手段;高维数据仍然难以应对.此外,对快速化DBSCAN算法在多个领域中的应用进行了跟踪报告.最后,对本领域未来的方向进行了展望. 展开更多
关键词 快速化dbscan 密度聚类 聚类算法 大数据 数据挖掘
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部