Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especia...Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we introduce a novel frequent pattern growth (FP-growth)method, which is efficient and scalable for mining both long and short frequent patterns without candidate generation. And build a new project frequent pattern growth (PFP-tree)algorithm on this study, which not only heirs all the advantages in the FP-growth method, but also avoids it's bottleneck in database size dependence. So increase algorithm's scalability efficiently.展开更多
针对Radon投影的计算机断层(Computer Tomography,CT)重建问题,提出了一种新的基于单位圆上正交展开法(Orthogonal Polynomial Expansions on the Disk,OPED)的有限角投影数据快速重建算法。该算法通过求解缺失投影与已知数据分别对应...针对Radon投影的计算机断层(Computer Tomography,CT)重建问题,提出了一种新的基于单位圆上正交展开法(Orthogonal Polynomial Expansions on the Disk,OPED)的有限角投影数据快速重建算法。该算法通过求解缺失投影与已知数据分别对应的正弦变换数据集之间所满足的线性方程组,得到完备数据正弦变换数据集的近似值,之后运用快速傅里叶变换(Fast Fourier Transform,FFT)及线性插值算法提高重建速度从而缩短重建时间。分别推导了单、双边投影数据缺失时的快速重建算法并给出了重建结果,实验结果证明,该方法能够有效提高重建效率。展开更多
文摘Frequent Pattern mining plays an essential role in data mining. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we introduce a novel frequent pattern growth (FP-growth)method, which is efficient and scalable for mining both long and short frequent patterns without candidate generation. And build a new project frequent pattern growth (PFP-tree)algorithm on this study, which not only heirs all the advantages in the FP-growth method, but also avoids it's bottleneck in database size dependence. So increase algorithm's scalability efficiently.
文摘针对Radon投影的计算机断层(Computer Tomography,CT)重建问题,提出了一种新的基于单位圆上正交展开法(Orthogonal Polynomial Expansions on the Disk,OPED)的有限角投影数据快速重建算法。该算法通过求解缺失投影与已知数据分别对应的正弦变换数据集之间所满足的线性方程组,得到完备数据正弦变换数据集的近似值,之后运用快速傅里叶变换(Fast Fourier Transform,FFT)及线性插值算法提高重建速度从而缩短重建时间。分别推导了单、双边投影数据缺失时的快速重建算法并给出了重建结果,实验结果证明,该方法能够有效提高重建效率。