期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
卷积神经网络快速挑选接收函数 被引量:4
1
作者 甘露 吴庆举 +1 位作者 黄清华 唐荣江 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2021年第7期2394-2404,共11页
地震三分量波形数据中提取的接收函数受震源复杂性及随机噪声等因素的影响,往往出现一些波形异常现象,需要在资料解释前予以剔除.当接收函数数量较多时,人为挑选质量合格的接收函数将耗费大量的时间.为了高效的挑选高质量的接收函数,本... 地震三分量波形数据中提取的接收函数受震源复杂性及随机噪声等因素的影响,往往出现一些波形异常现象,需要在资料解释前予以剔除.当接收函数数量较多时,人为挑选质量合格的接收函数将耗费大量的时间.为了高效的挑选高质量的接收函数,本文利用深度学习卷积神经网络(Convolutional Neural Network,简称CNN)方法来对接收函数的质量进行判断.我们使用华北地区和阿巴嘎地区地震观测台站接收的9833个不同的地震事件建立训练集,并用1521个新的地震事件作为检测数据集,得到的训练集的准确率和召回率均达到99%以上,测试集的准确率和召回率分别达到95.3%和92.4%.我们还使用了训练集和测试集以外的数据进行验证,并对比了不同CNN评估结果所对应的波形图,实验证明评估结果与实际的接收函数波形对应良好.此外,对于某些台站的接收函数,可能存在如下问题:波形虽然具有很好的一致性,但由于不符合常规意义下质量好的标准导致CNN无法识别.为解决该问题,本文首先对一定方位角和震中距范围内的接收函数相互求取二范数,再对二范数较低的结果进行统计,并与CNN的挑选结果进行对比,挑选出合格的数据. 展开更多
关键词 接收函数 卷积神经网络 快速挑选
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部