Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metasta...Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metastable liquid phase separation. At lower undercoolings,α-Fe phase was the primary phase and the solidification microstructure appeared as homogeneous well-defined dendrites. When the undercooling exceeded 24 K, the sample segregated into Fe-rich and Cu-rich zones. In the Fe-rich zone, FeSi intermetallic compound was the primary phase within the undercooling regime below 230 K, while Fe5Si3intermetallic compound replaced FeSi phase as the primary phase at larger undercoolings. The growth velocity of FeSi phase increased whereas that ofFe5Si3 phase decreased with increasing undercooling. For the Cu-rich zone, FeSi intermetallic compound was always the primary phase. Energy-dispersive spectrometry analyses showed that the average compositions of separated zones have deviated substantially from the original alloycomposition.展开更多
Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22...Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22%Sn peritectic alloy was composed of a(Cu) and δ(Cu41Snll) phases. If rapidly solidified in a drop tube, the alloy phase constitution changed from α(Cu) and δ(Cu41Sn11) phases into a single supersaturated (Cu) phase with the reducing of droplet diameter, and the maximum solubility of Sn in (Cu) phase extended to 22%. The Cu-5%Sn-5%Ni-5%Ag quaternary alloy was composed of (Cu) and (Ag) phases under the containerless processing condition in a drop tube, and the solute microsegregation of (Cu) phase was obvious. When the Cu-5%Sn-5%Ni-5%Ag quaternary alloy was solidified by melt spinning method, microsegregation was suppressed and solute trapping occurred. The experimental results show that the microstructures of primary (Cu) phase in the two alloys transfer from coarse dendrites into equiaxed grains with the increase of cooling rate and undercooling, which is accompanied by the grain refinement effect.展开更多
基金Projects(51271150,51327901,51371150)supported by the National Natural Science Foundation of China
文摘Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metastable liquid phase separation. At lower undercoolings,α-Fe phase was the primary phase and the solidification microstructure appeared as homogeneous well-defined dendrites. When the undercooling exceeded 24 K, the sample segregated into Fe-rich and Cu-rich zones. In the Fe-rich zone, FeSi intermetallic compound was the primary phase within the undercooling regime below 230 K, while Fe5Si3intermetallic compound replaced FeSi phase as the primary phase at larger undercoolings. The growth velocity of FeSi phase increased whereas that ofFe5Si3 phase decreased with increasing undercooling. For the Cu-rich zone, FeSi intermetallic compound was always the primary phase. Energy-dispersive spectrometry analyses showed that the average compositions of separated zones have deviated substantially from the original alloycomposition.
基金supported by the National Natural Science Foundation of China (Grant No. 50971105)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20106102120052)the NPU Foundation for Fundamental Research (Grant No. G9KY1021)
文摘Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22%Sn peritectic alloy was composed of a(Cu) and δ(Cu41Snll) phases. If rapidly solidified in a drop tube, the alloy phase constitution changed from α(Cu) and δ(Cu41Sn11) phases into a single supersaturated (Cu) phase with the reducing of droplet diameter, and the maximum solubility of Sn in (Cu) phase extended to 22%. The Cu-5%Sn-5%Ni-5%Ag quaternary alloy was composed of (Cu) and (Ag) phases under the containerless processing condition in a drop tube, and the solute microsegregation of (Cu) phase was obvious. When the Cu-5%Sn-5%Ni-5%Ag quaternary alloy was solidified by melt spinning method, microsegregation was suppressed and solute trapping occurred. The experimental results show that the microstructures of primary (Cu) phase in the two alloys transfer from coarse dendrites into equiaxed grains with the increase of cooling rate and undercooling, which is accompanied by the grain refinement effect.