期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
落管中Al-Ge亚共晶合金的快速枝晶生长 被引量:2
1
作者 刘向荣 曹崇德 魏炳波 《自然科学进展》 北大核心 2003年第1期79-82,共4页
采用落管无容器处理技术研究了Al-45% Ge亚共晶合金在无容器条件下的深过冷与快速技晶生长,自由落体过程中液滴达到的过冷度范围为13~201K,最大过冷度达0.27T_L,发现初生(Al)相的生长形态随着过冷度的增大由柱状枝晶向等轴枝晶转变。... 采用落管无容器处理技术研究了Al-45% Ge亚共晶合金在无容器条件下的深过冷与快速技晶生长,自由落体过程中液滴达到的过冷度范围为13~201K,最大过冷度达0.27T_L,发现初生(Al)相的生长形态随着过冷度的增大由柱状枝晶向等轴枝晶转变。根据快速枝晶生长理论对初生(Al)相的枝晶生长速度进行了计算,结果表明初生(Al)相的生长始终受溶质扩散控制,没有发生从溶质扩散控制生长向热扩散控制生长的转变。 展开更多
关键词 Al—Ge亚共合金 落管无容器处理 深过冷 快速枝晶生长 生长机制 生长形态
下载PDF
微重力条件下Ni-Cu合金的快速枝晶生长研究 被引量:16
2
作者 姚文静 杨春 +3 位作者 韩秀君 陈民 魏炳波 过增元 《物理学报》 SCIE EI CAS CSCD 北大核心 2003年第2期448-453,共6页
采用落管方法实现了Ni 5 0 %Cu过冷熔体在微重力和无容器条件下的快速枝晶生长 .对微重力条件下的晶体形核和快速生长进行了研究 ,发现随着过冷度的增大 ,晶体生长形态由粗大枝晶向规划均匀的等轴晶转变 .实验中最大冷却速率达到 8×... 采用落管方法实现了Ni 5 0 %Cu过冷熔体在微重力和无容器条件下的快速枝晶生长 .对微重力条件下的晶体形核和快速生长进行了研究 ,发现随着过冷度的增大 ,晶体生长形态由粗大枝晶向规划均匀的等轴晶转变 .实验中最大冷却速率达到 8× 10 3K s ,获得了 2 18K(0 14TL)的最大过冷度 .理论分析表明 ,过冷熔体中优先发生异质形核 ,形核率可达 10 1 2 m- 3s- 1 以上 ;Ni 5 0 %Cu过冷熔体中的枝晶生长随过冷度的增大发生由溶质扩散控制向热扩散控制的生长动力学机理转变 .在 6 8K过冷度条件下 ,生长界面前沿的偏析程序最大 . 展开更多
关键词 Ni-Cu合金 快速枝晶生长 落管 微重力 深过冷 熔体 镍铜二元系合金
原文传递
落管中Cu-Sb合金的深过冷与快速枝晶生长 被引量:2
3
作者 姚文静 韩秀君 魏炳波 《科学通报》 EI CAS CSCD 北大核心 2002年第11期824-828,共5页
采用落管方法实现了Cu-20%Sb亚共晶合金在无容器条件下的快速凝固.随着液滴直径的减小,过冷度逐渐增大,初生Cu枝晶发生组织细化.实验中获得了207K的过冷度,最大过冷度达到0.17TL.理论分析表明,由于这一合金具有较宽的凝固温度间隔,初... 采用落管方法实现了Cu-20%Sb亚共晶合金在无容器条件下的快速凝固.随着液滴直径的减小,过冷度逐渐增大,初生Cu枝晶发生组织细化.实验中获得了207K的过冷度,最大过冷度达到0.17TL.理论分析表明,由于这一合金具有较宽的凝固温度间隔,初生Cu枝晶的快速生长始终受溶质扩散控制.根据对Cu-Sb合金相图中T0线的计算,揭示出发生无偏析凝固的临界过冷度为△T0=474K.在最大过冷度207K时,初生Cu相的生长速度达到37mm/s,发生了显著的溶质截留效应. 展开更多
关键词 落管 Cu-Sb合金 深过冷 快速枝晶生长 铜-锑合金 金属 凝固
原文传递
Liquid phase separation and subsequent dendritic solidification of ternary Fe_(35)Cu_(35)Si_(30) alloy
4
作者 罗盛宝 王伟丽 +1 位作者 夏瑱超 魏炳波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2762-2769,共8页
Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metasta... Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metastable liquid phase separation. At lower undercoolings,α-Fe phase was the primary phase and the solidification microstructure appeared as homogeneous well-defined dendrites. When the undercooling exceeded 24 K, the sample segregated into Fe-rich and Cu-rich zones. In the Fe-rich zone, FeSi intermetallic compound was the primary phase within the undercooling regime below 230 K, while Fe5Si3intermetallic compound replaced FeSi phase as the primary phase at larger undercoolings. The growth velocity of FeSi phase increased whereas that ofFe5Si3 phase decreased with increasing undercooling. For the Cu-rich zone, FeSi intermetallic compound was always the primary phase. Energy-dispersive spectrometry analyses showed that the average compositions of separated zones have deviated substantially from the original alloycomposition. 展开更多
关键词 UNDERCOOLING phase separation dendritic growth rapid solidification solute distribution
下载PDF
Dendritic growth and solute trapping in rapidly solidified Cu-based alloys 被引量:1
5
作者 SONG RuiBo DAI FuPing WEI BingBo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第5期901-908,共8页
Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22... Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22%Sn peritectic alloy was composed of a(Cu) and δ(Cu41Snll) phases. If rapidly solidified in a drop tube, the alloy phase constitution changed from α(Cu) and δ(Cu41Sn11) phases into a single supersaturated (Cu) phase with the reducing of droplet diameter, and the maximum solubility of Sn in (Cu) phase extended to 22%. The Cu-5%Sn-5%Ni-5%Ag quaternary alloy was composed of (Cu) and (Ag) phases under the containerless processing condition in a drop tube, and the solute microsegregation of (Cu) phase was obvious. When the Cu-5%Sn-5%Ni-5%Ag quaternary alloy was solidified by melt spinning method, microsegregation was suppressed and solute trapping occurred. The experimental results show that the microstructures of primary (Cu) phase in the two alloys transfer from coarse dendrites into equiaxed grains with the increase of cooling rate and undercooling, which is accompanied by the grain refinement effect. 展开更多
关键词 Cu-based alloy rapid solidification dendritic growth solute trapping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部