多元低密度奇偶校验(low density parity check,LDPC)码因具有比二元LDPC码更好的纠错性能、更强的抗突发错误能力及能与高阶调制相结合等特点而引起广泛关注.然而,多元LDPC码的诸多优点却被其高复杂度的编译码算法所限制.基于RA结构,...多元低密度奇偶校验(low density parity check,LDPC)码因具有比二元LDPC码更好的纠错性能、更强的抗突发错误能力及能与高阶调制相结合等特点而引起广泛关注.然而,多元LDPC码的诸多优点却被其高复杂度的编译码算法所限制.基于RA结构,构造出了具有快速编码算法的校验矩阵,采用双向递归流水线算法进行编码,并利用改进的EMS算法进行译码,降低了算法的复杂度和运算量,有利于硬件的实现.在加性高斯白噪声信道下,对GF(2)和GF(4)的LDPC码进行了性能比较,同时对GF(4)LDPC码在BPSK和4QAM调制下进行了对比.仿真结果证明了设计的正确性和可行性.展开更多
An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehen...An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.展开更多
文摘多元低密度奇偶校验(low density parity check,LDPC)码因具有比二元LDPC码更好的纠错性能、更强的抗突发错误能力及能与高阶调制相结合等特点而引起广泛关注.然而,多元LDPC码的诸多优点却被其高复杂度的编译码算法所限制.基于RA结构,构造出了具有快速编码算法的校验矩阵,采用双向递归流水线算法进行编码,并利用改进的EMS算法进行译码,降低了算法的复杂度和运算量,有利于硬件的实现.在加性高斯白噪声信道下,对GF(2)和GF(4)的LDPC码进行了性能比较,同时对GF(4)LDPC码在BPSK和4QAM调制下进行了对比.仿真结果证明了设计的正确性和可行性.
基金Project(NR2013K04) supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,ChinaProject(20130909) supported by the Higher School Science and Technology Development Fund of Tianjin,China
文摘An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.