降质服务(Reduction of Quality,RoQ)攻击比传统的拒绝服务攻击(Denial of Service,DoS)攻击更具有隐秘性和多变性,这使得检测该攻击十分困难。为提高检测准确率并及时定位攻击源,该文将攻击流量提取建模为一个盲源分离过程,提出了基于...降质服务(Reduction of Quality,RoQ)攻击比传统的拒绝服务攻击(Denial of Service,DoS)攻击更具有隐秘性和多变性,这使得检测该攻击十分困难。为提高检测准确率并及时定位攻击源,该文将攻击流量提取建模为一个盲源分离过程,提出了基于快速ICA(Independent Component Analysis)的攻击流特征提取算法,从若干观测网络和终端设备中分离出RoQ攻击流,然后提取表征攻击流的特征参数。接着设计了一种基于支持向量机的协同检测系统和检测算法,通过用已标记的有攻击和无攻击的样本训练SVM分类器,最终实现RoQ攻击的检测。仿真结果表明该方法能够有效检测并定位伪造IP地址的RoQ攻击,检测率达到90%以上,而选取合适的ICA参数会提高检测效果。展开更多
目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singula...目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。展开更多
文摘降质服务(Reduction of Quality,RoQ)攻击比传统的拒绝服务攻击(Denial of Service,DoS)攻击更具有隐秘性和多变性,这使得检测该攻击十分困难。为提高检测准确率并及时定位攻击源,该文将攻击流量提取建模为一个盲源分离过程,提出了基于快速ICA(Independent Component Analysis)的攻击流特征提取算法,从若干观测网络和终端设备中分离出RoQ攻击流,然后提取表征攻击流的特征参数。接着设计了一种基于支持向量机的协同检测系统和检测算法,通过用已标记的有攻击和无攻击的样本训练SVM分类器,最终实现RoQ攻击的检测。仿真结果表明该方法能够有效检测并定位伪造IP地址的RoQ攻击,检测率达到90%以上,而选取合适的ICA参数会提高检测效果。
文摘目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。