In order to reduce the storage amount for the sparse coefficient matrix in pre-corrected fast Fourier transform (P-FFT) or fitting the Green function fast Fourier transform (FG-FFT), the real coefficients are solv...In order to reduce the storage amount for the sparse coefficient matrix in pre-corrected fast Fourier transform (P-FFT) or fitting the Green function fast Fourier transform (FG-FFT), the real coefficients are solved by improving the solution method of the coefficient equations. The novel method in both P-FFT and FG-FFT for the electric field integral equation (EFIE) is employed. With the proposed method, the storage amount for the sparse coefficient matrix can be reduced to the same level as that in the adaptive integral method (AIM) or the integral equation fast Fourier transform (IE-FFT). Meanwhile, the new algorithms do not increase the number of the FFTs used in a matrix-vector product, and maintain almost the same level of accuracy as the original versions. Besides, in respect of the time cost in each iteration, the new algorithms have also the same level as AIM (or IE- FFF). The numerical examples demonstrate the advantages of the proposed method.展开更多
A base function expressed with Chebyshev polynomials is reached. The relationship between the coefficients of the partial differential equation and the base function is deduced. Using the relationship, one can obtain ...A base function expressed with Chebyshev polynomials is reached. The relationship between the coefficients of the partial differential equation and the base function is deduced. Using the relationship, one can obtain nearly the same results as those calculated by Fast Fourier Transformation (FFT). The pseudo-spectral matrix method is applied in this paper to simulate numerically the incompressible laminar boundary flow on a plate. The simulation proves to be precise and efficient.展开更多
Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the advers...Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.展开更多
The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. ...The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. The virtual dimensionality is introduced to determine the number of dimensions needed to be preserved. Since there is no prioritization among independent components generated by the FastICA,the mixing matrix of FastICA is initialized by endmembers,which were extracted by using unsupervised maximum distance method. Minimum Noise Fraction (MNF) is used for preprocessing of original data,which can reduce the computational complexity of FastICA significantly. Finally,FastICA is performed on the selected principal components acquired by MNF to generate the expected independent components in accordance with the order of endmembers. Experimental results demonstrate that the proposed method outperforms second-order statistics-based transforms such as principle components analysis.展开更多
To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the...To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.展开更多
We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical ...We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.展开更多
We present novel vector permutation and branch reduction methods to minimize the number of execution cycles for bit reversal algorithms.The new methods are applied to single instruction multiple data(SIMD) parallel im...We present novel vector permutation and branch reduction methods to minimize the number of execution cycles for bit reversal algorithms.The new methods are applied to single instruction multiple data(SIMD) parallel implementation of complex data floating-point fast Fourier transform(FFT).The number of operational clock cycles can be reduced by an average factor of 3.5 by using our vector permutation methods and by 1.1 by using our branch reduction methods,compared with conventional im-plementations.Experiments on MPC7448(a well-known SIMD reduced instruction set computing processor) demonstrate that our optimal bit-reversal algorithm consistently takes fewer than two cycles per element in complex array operations.展开更多
The paper proposes a robust digital audio watermarking scheme using blind source separation(BSS) based on the global optimization of independency metric(IM),which is formulated as a generalized eigenvalue(GE) problem....The paper proposes a robust digital audio watermarking scheme using blind source separation(BSS) based on the global optimization of independency metric(IM),which is formulated as a generalized eigenvalue(GE) problem.Compared with traditional information-theoretical approaches used in digital audio watermarking,such as fast independent component analysis(FastICA),the proposed scheme has lower complexity without timeconsuming iteration steps used in FastICA.To make full use of the multiresolution characteristic of discrete wavelet transform(DWT) and the energy compression characteristic of discrete cosine transform(DCT),the watermark is embedded in the middle DWT-DCT coefficients and the independent component analysis(ICA) approach based on IM is used in the detecting scheme.Simulation results based on Stirmark for Audio v02 show that the proposed scheme has strong robustness as well as the imperceptibility and security.展开更多
基金The National Basic Research Program of China(973Program)(No.2013CB329002)
文摘In order to reduce the storage amount for the sparse coefficient matrix in pre-corrected fast Fourier transform (P-FFT) or fitting the Green function fast Fourier transform (FG-FFT), the real coefficients are solved by improving the solution method of the coefficient equations. The novel method in both P-FFT and FG-FFT for the electric field integral equation (EFIE) is employed. With the proposed method, the storage amount for the sparse coefficient matrix can be reduced to the same level as that in the adaptive integral method (AIM) or the integral equation fast Fourier transform (IE-FFT). Meanwhile, the new algorithms do not increase the number of the FFTs used in a matrix-vector product, and maintain almost the same level of accuracy as the original versions. Besides, in respect of the time cost in each iteration, the new algorithms have also the same level as AIM (or IE- FFF). The numerical examples demonstrate the advantages of the proposed method.
文摘A base function expressed with Chebyshev polynomials is reached. The relationship between the coefficients of the partial differential equation and the base function is deduced. Using the relationship, one can obtain nearly the same results as those calculated by Fast Fourier Transformation (FFT). The pseudo-spectral matrix method is applied in this paper to simulate numerically the incompressible laminar boundary flow on a plate. The simulation proves to be precise and efficient.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(12CX06071A)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.
基金Supported by the National Natural Science Foundation of China (No. 60572135)
文摘The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. The virtual dimensionality is introduced to determine the number of dimensions needed to be preserved. Since there is no prioritization among independent components generated by the FastICA,the mixing matrix of FastICA is initialized by endmembers,which were extracted by using unsupervised maximum distance method. Minimum Noise Fraction (MNF) is used for preprocessing of original data,which can reduce the computational complexity of FastICA significantly. Finally,FastICA is performed on the selected principal components acquired by MNF to generate the expected independent components in accordance with the order of endmembers. Experimental results demonstrate that the proposed method outperforms second-order statistics-based transforms such as principle components analysis.
基金supported by grants from the National Natural Science Foundation of China (No.51076144)the Major Special Project of Technology Office in Zhejiang Province (No.2011C11073, No.2011C16038)
文摘To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.
基金supported by National Natural Science Foundation of China (Grant Nos. 40874020, 40474012 and 40821062)National R&D Special Fund for Public Welfare Industry (Grant No. 20070804)
文摘We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.
文摘We present novel vector permutation and branch reduction methods to minimize the number of execution cycles for bit reversal algorithms.The new methods are applied to single instruction multiple data(SIMD) parallel implementation of complex data floating-point fast Fourier transform(FFT).The number of operational clock cycles can be reduced by an average factor of 3.5 by using our vector permutation methods and by 1.1 by using our branch reduction methods,compared with conventional im-plementations.Experiments on MPC7448(a well-known SIMD reduced instruction set computing processor) demonstrate that our optimal bit-reversal algorithm consistently takes fewer than two cycles per element in complex array operations.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of Chinathe National Natural Science Foundation of China (No. 60802058)
文摘The paper proposes a robust digital audio watermarking scheme using blind source separation(BSS) based on the global optimization of independency metric(IM),which is formulated as a generalized eigenvalue(GE) problem.Compared with traditional information-theoretical approaches used in digital audio watermarking,such as fast independent component analysis(FastICA),the proposed scheme has lower complexity without timeconsuming iteration steps used in FastICA.To make full use of the multiresolution characteristic of discrete wavelet transform(DWT) and the energy compression characteristic of discrete cosine transform(DCT),the watermark is embedded in the middle DWT-DCT coefficients and the independent component analysis(ICA) approach based on IM is used in the detecting scheme.Simulation results based on Stirmark for Audio v02 show that the proposed scheme has strong robustness as well as the imperceptibility and security.