Objective To investigate the mechanism of electroacupuncture (EA) in treating Alzheimer's disease (AD) from aspect of mitochondria. Methods Twelve 8-month old SAMP8 mice were randomly divided into a model group ...Objective To investigate the mechanism of electroacupuncture (EA) in treating Alzheimer's disease (AD) from aspect of mitochondria. Methods Twelve 8-month old SAMP8 mice were randomly divided into a model group (Group Mod, n=6) and an electroacupuncture group (Group EA, n=6), and six 8-month old SAMR1 mice were selected as a control group (Group Cont). Animals in Group EA was treated with EA at "Baihui" (百会 GV 20), "Dazhui" (大椎 GV 14), "Shenshu (肾俞 BL 23) and "Taixi" (太溪 KI 3) for 20 min, once daily with 20 days of treatments as a therapeutic course, lasting for 3 courses. Mice in the other two groups were fixed in the same way as those in Group EA at the same time without any treatment. After treatment, learning and memory abilities of the mice were measured by Morris water maze, activities of enzyme complex of hippocampal mitochondrial respiratory chain were measured by spectrophotometry, and levels of adenosine triphosphate (ATP) were detected by reverse phase high performance liquid chromatography (HPLC) method. Results Compared with Group Cont, the average escape latency in Group Mod was significantly prolonged, the residence time on the platform quadrant was shortened, the activities of enzyme complex Ⅰ, Ⅱ, Ⅲ and Ⅳ in hippocampal mitochondrial respiratory chain was decreased, and ATP contents was lessened in Group Mod. Compared with Group Mod, the average escape latency was significantly shortened, the residence time on the platform quadrant was lengthened, the activities of enzyme complex Ⅰ, Ⅱ, Ⅲ and Ⅳ in hippocampal mitochondria respiratory chain were significantly increased, and ATP contents were also increased in Group EA. Conclusion Electroacupuncture can elevate the activities of enzyme complex in hippocampal mitochondrial respiratory chain and ATP contents, and improve mitochondrial functions, which may be one of the underlying mechanisms of EA in treatment of AD.展开更多
Objective:To observe the effect of acupuncture on the expression of mitochondrial proteome in hippocampus of senescence-accelerated mouse prone g (SAMPg) mice models with Alzheimer disease (AD),and to explore the...Objective:To observe the effect of acupuncture on the expression of mitochondrial proteome in hippocampus of senescence-accelerated mouse prone g (SAMPg) mice models with Alzheimer disease (AD),and to explore the possible protective mechanism of acupuncture on mitochondria.Methods:Sixty 6-month-old male SAMP8 mice were randomly divided into an acupuncture at acupoint group,an acupuncture at non-acupoint group and a model group,20 mice in each group.The 20 male senescence-accelerated mouse/resistance 1 (SAMR1) mice of the same age were used as a normal control group.Shenshu (BL 23),Baihui (GV 20),Xuehai (SP 10) and Geshu (BL 17) were selected for acupuncture intervention in acupuncture at acupoint group.After an 8-week intervention,mitochondrial tissues were extracted from the hippocampus.Differentially expressed proteins were identified by subcellular organelle proteomics.Western blot was used to verify the expressions of some related proteins in hippocampal mitochondria.Results:Compared with the model group,there were 13 differentially expressed protein spots in the acupuncture at acupoint group,of which,9 were up-regulated,including neurofilament light polypeptide (NFL),actin (cytoplasmic 1,database ID:ACTB),tubulin beta-2A chain (TBB2A),tropomodulin-2 (TMOD2),pyruvate dehydrogenase E1 component subunit beta (PDHE1-β),NADH-ubiquinone oxidoreductase 75 kDa subunit (database ID:NDUS1),heat shock cognate 71 kDa protein (HSC71),pyruvate dehydrogenase E1 component subunit alpha (PDHE1-α) and ATP synthase beta subunit (ATP-β);4 were down-regulated,including glial fibrillary acidic protein (GFAP),pyruvate dehydrogenase phosphatase 1 (PDP1),mitochondrial-processing peptidase subunit alpha (MMP-α) and adenosine kinase (ADK).According to the information provided in the protein database,most of the differentially expressed proteins involve the regulation of mitochondrial function and structure.The expression levels of NFL and TBB2A in the normal control group and the acupuncture at acupoint group were significantly higher than those in the acupuncture at non-acupoint group (P〈0.05).ATP-β and NDUS1 expression levels were significantly higher in the acupuncture at acupoint group than those in the acupuncture at non-acupoint group (P〈0.05);there was no significant difference between the acupuncture at non-acupoint group and the model group (P〉0.05).Conclusion:Acupuncture may achieve the potential therapeutic effect on AD by regulating the structure and functional proteins of hippocampal mitochondria.展开更多
基金Supported by National Natural Science Fund Project of China:81102625Henan Province Science Foundation for Youths:2010269
文摘Objective To investigate the mechanism of electroacupuncture (EA) in treating Alzheimer's disease (AD) from aspect of mitochondria. Methods Twelve 8-month old SAMP8 mice were randomly divided into a model group (Group Mod, n=6) and an electroacupuncture group (Group EA, n=6), and six 8-month old SAMR1 mice were selected as a control group (Group Cont). Animals in Group EA was treated with EA at "Baihui" (百会 GV 20), "Dazhui" (大椎 GV 14), "Shenshu (肾俞 BL 23) and "Taixi" (太溪 KI 3) for 20 min, once daily with 20 days of treatments as a therapeutic course, lasting for 3 courses. Mice in the other two groups were fixed in the same way as those in Group EA at the same time without any treatment. After treatment, learning and memory abilities of the mice were measured by Morris water maze, activities of enzyme complex of hippocampal mitochondrial respiratory chain were measured by spectrophotometry, and levels of adenosine triphosphate (ATP) were detected by reverse phase high performance liquid chromatography (HPLC) method. Results Compared with Group Cont, the average escape latency in Group Mod was significantly prolonged, the residence time on the platform quadrant was shortened, the activities of enzyme complex Ⅰ, Ⅱ, Ⅲ and Ⅳ in hippocampal mitochondrial respiratory chain was decreased, and ATP contents was lessened in Group Mod. Compared with Group Mod, the average escape latency was significantly shortened, the residence time on the platform quadrant was lengthened, the activities of enzyme complex Ⅰ, Ⅱ, Ⅲ and Ⅳ in hippocampal mitochondria respiratory chain were significantly increased, and ATP contents were also increased in Group EA. Conclusion Electroacupuncture can elevate the activities of enzyme complex in hippocampal mitochondrial respiratory chain and ATP contents, and improve mitochondrial functions, which may be one of the underlying mechanisms of EA in treatment of AD.
文摘Objective:To observe the effect of acupuncture on the expression of mitochondrial proteome in hippocampus of senescence-accelerated mouse prone g (SAMPg) mice models with Alzheimer disease (AD),and to explore the possible protective mechanism of acupuncture on mitochondria.Methods:Sixty 6-month-old male SAMP8 mice were randomly divided into an acupuncture at acupoint group,an acupuncture at non-acupoint group and a model group,20 mice in each group.The 20 male senescence-accelerated mouse/resistance 1 (SAMR1) mice of the same age were used as a normal control group.Shenshu (BL 23),Baihui (GV 20),Xuehai (SP 10) and Geshu (BL 17) were selected for acupuncture intervention in acupuncture at acupoint group.After an 8-week intervention,mitochondrial tissues were extracted from the hippocampus.Differentially expressed proteins were identified by subcellular organelle proteomics.Western blot was used to verify the expressions of some related proteins in hippocampal mitochondria.Results:Compared with the model group,there were 13 differentially expressed protein spots in the acupuncture at acupoint group,of which,9 were up-regulated,including neurofilament light polypeptide (NFL),actin (cytoplasmic 1,database ID:ACTB),tubulin beta-2A chain (TBB2A),tropomodulin-2 (TMOD2),pyruvate dehydrogenase E1 component subunit beta (PDHE1-β),NADH-ubiquinone oxidoreductase 75 kDa subunit (database ID:NDUS1),heat shock cognate 71 kDa protein (HSC71),pyruvate dehydrogenase E1 component subunit alpha (PDHE1-α) and ATP synthase beta subunit (ATP-β);4 were down-regulated,including glial fibrillary acidic protein (GFAP),pyruvate dehydrogenase phosphatase 1 (PDP1),mitochondrial-processing peptidase subunit alpha (MMP-α) and adenosine kinase (ADK).According to the information provided in the protein database,most of the differentially expressed proteins involve the regulation of mitochondrial function and structure.The expression levels of NFL and TBB2A in the normal control group and the acupuncture at acupoint group were significantly higher than those in the acupuncture at non-acupoint group (P〈0.05).ATP-β and NDUS1 expression levels were significantly higher in the acupuncture at acupoint group than those in the acupuncture at non-acupoint group (P〈0.05);there was no significant difference between the acupuncture at non-acupoint group and the model group (P〉0.05).Conclusion:Acupuncture may achieve the potential therapeutic effect on AD by regulating the structure and functional proteins of hippocampal mitochondria.