为了更快地实现主动降噪,设计了噪音多项式拟合模型,提出了改进的变步长滤波最小均方算法(Improved Filtered-x Least Mean Square,IFxLMS)。该算法在统计噪音信号的同时,对噪音信号进行拟合与预测,随后结合误差信号与预测信号对步长进...为了更快地实现主动降噪,设计了噪音多项式拟合模型,提出了改进的变步长滤波最小均方算法(Improved Filtered-x Least Mean Square,IFxLMS)。该算法在统计噪音信号的同时,对噪音信号进行拟合与预测,随后结合误差信号与预测信号对步长进行调节,达到快速调节的目的。为了验证该算法的性能,将该算法与传统变步长滤波最小均方算法对比试验,仿真结果显示,在相同噪音条件下,新算法将噪音信号降到10 dB、20 dB、30 dB、35 dB等信噪比时,所需的迭代次数减少了4次~60次不等,在同时新算法的鲁棒性也优于普通的滤波变步长最小均方算法。展开更多
最小均方(Least Mean Square,LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新...最小均方(Least Mean Square,LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新向量,使得算法的更新方向尽可能接近Newton方向。基于此方法,给出一种方向优化LMS(Direction Optimization LMS,DOLMS)算法,并推广到变步长DOLMS算法。理论分析与仿真结果表明,该方法与传统分块LMS算法相比,有更快的收敛速度和更小的计算复杂度。展开更多
文摘为了更快地实现主动降噪,设计了噪音多项式拟合模型,提出了改进的变步长滤波最小均方算法(Improved Filtered-x Least Mean Square,IFxLMS)。该算法在统计噪音信号的同时,对噪音信号进行拟合与预测,随后结合误差信号与预测信号对步长进行调节,达到快速调节的目的。为了验证该算法的性能,将该算法与传统变步长滤波最小均方算法对比试验,仿真结果显示,在相同噪音条件下,新算法将噪音信号降到10 dB、20 dB、30 dB、35 dB等信噪比时,所需的迭代次数减少了4次~60次不等,在同时新算法的鲁棒性也优于普通的滤波变步长最小均方算法。
文摘最小均方(Least Mean Square,LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新向量,使得算法的更新方向尽可能接近Newton方向。基于此方法,给出一种方向优化LMS(Direction Optimization LMS,DOLMS)算法,并推广到变步长DOLMS算法。理论分析与仿真结果表明,该方法与传统分块LMS算法相比,有更快的收敛速度和更小的计算复杂度。
基金National Natural Science Foundation of China (11274259 )Natural Science Foundation of Fujian Province , China (2011J01275 )Science and Technology Project of Xiamen City (3502z20113008 )