期刊文献+
共找到479篇文章
< 1 2 24 >
每页显示 20 50 100
基于卷积神经网络和Transformer的高效图像超分辨率重建
1
作者 李邦源 杨家全 +3 位作者 薛若漪 张晓宇 汪航 孙宏滨 《云南电力技术》 2024年第2期41-48,共8页
深度学习推动了图像超分辨率重建技术的显著进步,但复杂的操作导致计算和内存成本高昂,限制了其实际应用。为此,提出了一种新颖的算法,融合了Transformer和卷积神经网络,同时采用膨胀卷积和深度可分离卷积技术。在五个基准数据集上的实... 深度学习推动了图像超分辨率重建技术的显著进步,但复杂的操作导致计算和内存成本高昂,限制了其实际应用。为此,提出了一种新颖的算法,融合了Transformer和卷积神经网络,同时采用膨胀卷积和深度可分离卷积技术。在五个基准数据集上的实验证明,所提EHN模型能够高效提取超分辨率特征,在更少参数和推理时间下实现与现有方法相当甚至更好的超分辨率效果。特别地,在×2、×3和×4放大倍数下,EHN的推理时间仅为现有网络的18.4%、18.9%和20.3%,这一优势对于处理大量图像的场景至关重要,能够显著减少计算时间和资源消耗,提升整体效率。 展开更多
关键词 图像分辨率 TRANSFORMER 卷积神经网络 膨胀卷积 深度可分离卷积
下载PDF
基于卷积神经网络的超分辨率失真控制图像重构研究
2
作者 舒忠 郑波儿 《包装工程》 CAS 北大核心 2024年第7期222-233,共12页
目的解决超分辨率图像重构模型中存在的功能单元之间关联性差,图像色度特征提取完整性不强、超分辨率重构失真控制和采样过程残差控制偏弱等问题。方法通过在卷积神经网络模型引入双激活函数,提高模型中各功能单元之间的兼容连接性;引... 目的解决超分辨率图像重构模型中存在的功能单元之间关联性差,图像色度特征提取完整性不强、超分辨率重构失真控制和采样过程残差控制偏弱等问题。方法通过在卷积神经网络模型引入双激活函数,提高模型中各功能单元之间的兼容连接性;引用密集连接卷积神经网络构建超分辨率失真控制单元,分别实现对4个色度分量进行卷积补偿运算;将残差插值函数应用于上采样单元中,使用深度反投影网络规则实现超分辨率色度特征插值运算。结果设计的模型集联了内部多个卷积核,实现了超分辨率色度失真补偿,使用了统一的处理权值,确保了整个模型内部组成单元的有机融合。结论相关实验结果验证了本文图像重构模型具有良好可靠性、稳定性和高效性。 展开更多
关键词 卷积神经网络 分辨率 激活函数 转置卷积 深度反投影网络模型 图像重构
下载PDF
基于卷积神经网络梯度和纹理补偿的单幅图像超分辨率重建 被引量:1
3
作者 黄裕青 李华锋 +1 位作者 原铭 张亚飞 《数据采集与处理》 CSCD 北大核心 2023年第5期1112-1124,共13页
现有的单幅图像超分辨率重建算法大都在追求高峰值信噪比(Peak signal-to-noise ratio,PSNR),在特征提取过程中缺少对图像纹理细节信息的关注,导致重建图像的人眼主观感知效果不太理想。为了解决这一问题,本文提出了一种基于卷积神经网... 现有的单幅图像超分辨率重建算法大都在追求高峰值信噪比(Peak signal-to-noise ratio,PSNR),在特征提取过程中缺少对图像纹理细节信息的关注,导致重建图像的人眼主观感知效果不太理想。为了解决这一问题,本文提出了一种基于卷积神经网络梯度和纹理补偿的单幅图像超分辨率重建算法。具体设计了3条支路分别用于结构特征提取、纹理细节特征提取及梯度补偿,然后利用所提出的融合模块对结构特征和纹理细节特征进行融合。为防止重建过程中丢失图像的纹理信息,提出纹理细节特征提取模块补偿图像的纹理细节信息,增强网络的纹理保持能力;同时,利用梯度补偿模块提取的梯度信息对结构信息进行增强;此外还构建了深层特征提取结构,结合通道注意力与空间注意力对深层特征中的信息进行筛选及特征增强;最后利用二阶残差块对结构和纹理特征进行融合,使重建图像的特征信息更加完善。通过对比实验验证了本文方法的有效性和优越性。 展开更多
关键词 卷积神经网络 分辨率图像重建 梯度纹理补偿 注意力
下载PDF
基于深度卷积神经网络的红外图像超分辨率重建技术 被引量:1
4
作者 袁茜琳 张宝辉 +4 位作者 张倩 何铭 周金杰 练琤 岳江 《红外技术》 CSCD 北大核心 2023年第5期498-505,共8页
由于器件及工艺等技术限制,红外图像分辨率相对可见光图像较低,存在细节纹理特征模糊等不足。对此,本文提出一种基于深度卷积神经网络(convolutional neural network,CNN)的红外图像超分辨率重建方法。该方法改进残差模块,降低激活函数... 由于器件及工艺等技术限制,红外图像分辨率相对可见光图像较低,存在细节纹理特征模糊等不足。对此,本文提出一种基于深度卷积神经网络(convolutional neural network,CNN)的红外图像超分辨率重建方法。该方法改进残差模块,降低激活函数对信息流影响的同时加深网络,充分利用低分辨率红外图像的原始信息。结合高效通道注意力机制和通道-空间注意力模块,使重建过程中有选择性地捕获更多特征信息,有利于对红外图像高频细节更准确地进行重建。实验结果表明,本文方法重建红外图像峰值信噪比(peak signal to noise ratio,PSNR)优于传统的Bicubic插值法以及基于CNN的SRResNet、EDSR、RCAN模型。当尺度因子为×2和×4时,重建图像的平均PSNR值比传统Bicubic插值法分别提高了4.57 dB和3.37 dB。 展开更多
关键词 红外图像 分辨率重建 卷积神经网络 注意力机制
下载PDF
基于并联式卷积神经网络的遥感影像超分辨率重建 被引量:1
5
作者 李薇 杜东升 +1 位作者 邓剑波 陈良宇 《科学技术与工程》 北大核心 2023年第27期11513-11521,共9页
遥感影像超分辨率重建有助于丰富地物细节,从而更全面地反映地物目标信息。为了解决目前基于深度学习的超分辨率重建方法难以同时兼顾影像高、低频信息的问题,提出了一种并联式遥感影像超分辨率重建方法。该方法并联了密集深层反投影网... 遥感影像超分辨率重建有助于丰富地物细节,从而更全面地反映地物目标信息。为了解决目前基于深度学习的超分辨率重建方法难以同时兼顾影像高、低频信息的问题,提出了一种并联式遥感影像超分辨率重建方法。该方法并联了密集深层反投影网络和浅层多尺度网络,利用密集深层反投影网络精确预测遥感影像的高频内容;同时利用浅层多尺度网络来增加目标可分辨能力,并保留影像的低频部分来提升影像的质量。这个方法在GF-1和GF-2数据集上进行了实验,并在Landsat 8和ASTER异源遥感影像数据集上进行了泛化验证。研究结果表明,相较于增强深度残差网络(enhanced deep residual networks for single image super-resolution,EDSR)、深层和浅层端到端卷积网络(end-to-end image super resolution via deep and shallow convolutional network,EEDS)和密集深层反投影网络(deep back-projection networks for super-resolution,DBPN),峰值信噪比(peak signal to noise ratio,PSNR)分别提升了2.30、2.23、0.25 dB,结构相似度(structural similarity,SSIM)性能指标分别提升了0.1316、0.1085、0.0096。本文方法有助于从数据端改善遥感影像目标识别、地物分类等应用的精度,进一步提高遥感数据在资源调查、环境监测、灾害预报等领域的应用效能。 展开更多
关键词 遥感影像 分辨率重建 卷积神经网络 多尺度 并联式
下载PDF
基于混合时空卷积的轻量级视频超分辨率重建
6
作者 夏振平 陈豪 +2 位作者 张宇宁 程成 胡伏原 《光学精密工程》 EI CAS CSCD 北大核心 2024年第16期2564-2576,共13页
针对三维卷积神经网络在视频超分辨率任务上具有较高的计算复杂度以及提取时空特征有限的问题,本文设计了一种基于混合时空卷积的轻量级视频超分辨率重建网络。首先,提出了一个基于混合时空卷积的模块,实现了网络时空特征提取能力的提... 针对三维卷积神经网络在视频超分辨率任务上具有较高的计算复杂度以及提取时空特征有限的问题,本文设计了一种基于混合时空卷积的轻量级视频超分辨率重建网络。首先,提出了一个基于混合时空卷积的模块,实现了网络时空特征提取能力的提升以及计算复杂度的降低;其次,提出了一个基于相似性的选择性特征融合模块,进一步增强了相关特征的提取能力;最后,设计了一种基于注意力机制的运动补偿模块,在一定程度上减轻了错误的特征融合的影响。实验结果表明:所提网络可以在视频超分辨率性能和网络复杂度之间取得很好的平衡,而且在基准数据集SPMCS-11上4倍超分辨率达到8 frame/s。所提网络满足了边缘设备推理运行中快速、准确等要求。 展开更多
关键词 视频分辨率 深度学习 三维卷积神经网络 特征融合
下载PDF
面向超分辨率重建的层次间局部特征增强网络
7
作者 王晓峰 黄煜婷 +2 位作者 张文尉 张轩 陈东方 《计算机工程与设计》 北大核心 2024年第8期2407-2414,共8页
基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块... 基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块和特征感知注意力机制组成。级联残差模块通过有效残差连接增加对残差分支信息的利用;层次间特征增强块提取不同深度特征的依赖关系,自适应调整中间层特征权值增强捕获关键信息的能力;特征感知注意力机制采用方向感知和位置判断的方式准确定位和识别感兴趣对象。多项标准数据集的实验结果表明,该方法能改善超分辨率的视觉重建效果,整体性能优于现有方法。 展开更多
关键词 卷积神经网络 分辨率 局部特征增强 级联残差模块 注意力机制 方向感知 位置判断
下载PDF
基于双分支融合网络的图像超分辨率重建与增强
8
作者 贾世杰 杨真杰 孙万鑫 《大连交通大学学报》 CAS 2024年第3期114-120,共7页
针对现有的图像超分算法难以从模糊的低分辨率图像中重建清晰的高分辨率图像的问题,提出了双分支融合网络,通过双分支结构来联合处理图像去模糊增强、图像超分任务。网络整体分为特征提取、特征融合、重建3个阶段。在特征提取阶段,通过... 针对现有的图像超分算法难以从模糊的低分辨率图像中重建清晰的高分辨率图像的问题,提出了双分支融合网络,通过双分支结构来联合处理图像去模糊增强、图像超分任务。网络整体分为特征提取、特征融合、重建3个阶段。在特征提取阶段,通过以ResNet为基本模式所构建的轻量化残差组、增强稠密残差块来强化对去模糊局部特征、多尺度高频特征的提取;同时为了提升关键区域的特征表达,引入监督注意力模块将提取到的特征进行校准与细化。在特征融合阶段,以像素相乘、通道相加的方式进行融合。在重建阶段,通过多个卷积操作提升空间分辨率。试验结果表明,对于4倍重建任务,输出图像的峰值信噪比(PSNR)在LR-GOPRO、Set5数据集上比GFN网络分别提高了1.34、1.36 dB,且模型的参数减少约50%。 展开更多
关键词 分辨率重建 卷积 双分支 特征融合 稠密残差
下载PDF
基于双路回归神经网络的遥感图像超分辨率重建方法 被引量:1
9
作者 刘淼 龚炳江 《起重运输机械》 2023年第5期12-17,共6页
文中提出了一种于双路回归神经网络的遥感图像超分辨率重建方法,引入减少了计算量复杂性和加速网络融合的局部残差学习机制;通过跳级连接和通道注意力机制将融合引入网络以增加特征图的数量,并促进反卷积恢复图像细节的图层;双对称模的... 文中提出了一种于双路回归神经网络的遥感图像超分辨率重建方法,引入减少了计算量复杂性和加速网络融合的局部残差学习机制;通过跳级连接和通道注意力机制将融合引入网络以增加特征图的数量,并促进反卷积恢复图像细节的图层;双对称模的输出对增强特性表示和选择性地强调重要性特征的总结信息可使网络架构进行分类信息和减少计算成本。该方法克服了传统方法构建图像的解决方案未有显著改进、图像非常平滑、所需细节容易丢失等问题,进一步提高了改进后组织的有效性和优越性。 展开更多
关键词 神经网络 双路回归 分辨率重建 复杂性 方法
下载PDF
基于Transformer-CNN的轻量级图像超分辨率重建网络 被引量:3
10
作者 陈豪 夏振平 +2 位作者 程成 林李兴 张博文 《计算机应用》 CSCD 北大核心 2024年第1期292-299,共8页
针对现有超分辨率重建网络具有较高的计算复杂度和存在大量内存消耗的问题,提出了一种基于Transformer-CNN的轻量级图像超分辨率重建网络,使超分辨率重建网络更适合应用于移动平台等嵌入式终端。首先,提出了一个基于Transformer-CNN的... 针对现有超分辨率重建网络具有较高的计算复杂度和存在大量内存消耗的问题,提出了一种基于Transformer-CNN的轻量级图像超分辨率重建网络,使超分辨率重建网络更适合应用于移动平台等嵌入式终端。首先,提出了一个基于Transformer-CNN的混合模块,从而增强网络捕获局部−全局深度特征的能力;其次,提出了一个改进的倒置残差块来特别关注高频区域的特征,以提升特征提取能力和减少推理时间;最后,在探索激活函数的最佳选择后,采用GELU(Gaussian Error Linear Unit)激活函数来进一步提高网络性能。实验结果表明,所提网络可以在图像超分辨率性能和网络复杂度之间取得很好的平衡,而且在基准数据集Urban100上4倍超分辨率的推理速度达到91 frame/s,比优秀网络SwinIR(Image Restoration using Swin transformer)快11倍,表明所提网络能够高效地重建图像的纹理和细节,并减少大量的推理时间。 展开更多
关键词 图像分辨率 深度学习 TRANSFORMER 卷积神经网络 轻量级
下载PDF
基于注意力机制的残差特征聚合网络超分辨率图像重建研究
11
作者 孙阳 丁建伟 +2 位作者 张琪 魏慧雯 田博文 《计算机科学》 CSCD 北大核心 2024年第S01期441-446,共6页
针对单图像超分辨率算法级联残差块的输出特征仅在局部作用的问题,提出了一种结合注意力机制的残差特征聚合网络。该网络通过跳跃连接将各残差块输出不同层次的特征聚合到残差组的尾部,实现特征的充分提取与复用,扩大网络的感受野并增... 针对单图像超分辨率算法级联残差块的输出特征仅在局部作用的问题,提出了一种结合注意力机制的残差特征聚合网络。该网络通过跳跃连接将各残差块输出不同层次的特征聚合到残差组的尾部,实现特征的充分提取与复用,扩大网络的感受野并增强特征的表达能力,使得不同层次的特征图更充分地参与到图像重建中。同时,为增强特征信息空间上的相关性,引入增强空间注意力机制以改善残差块的性能。大量实验表明,此模型可以获得良好的超分辨率性能。在×4倍SR任务中与RCAN,SAN和HAN等主流方法相比,在5个基准测试集上取得的峰值信噪比平均提升0.07 dB,0.06 dB,0.006 dB,结构相似度平均提升0.0012,0.0011,0.0008,重建图像质量明显提高,细节更加丰富,充分说明了所提方法的有效性与先进性。 展开更多
关键词 图像分辨率重建 深度学习 注意力机制 特征聚合 卷积神经网络
下载PDF
级联残差优化Transformer网络的图像超分辨率重建
12
作者 林坚普 吴镇城 +3 位作者 王崑赋 林志贤 郭太良 林珊玲 《光学精密工程》 EI CAS CSCD 北大核心 2024年第12期1902-1914,共13页
为了扩展图像超分辨率算法中卷积神经网络在多个尺度特征上的自适应学习能力,提升网络性能,本文提出一种基于级联残差方法的Transformer网络优化结构进行图像超分辨率重建。首先,该网络采用级联残差结构,增强了网络对低阶和中阶特征的... 为了扩展图像超分辨率算法中卷积神经网络在多个尺度特征上的自适应学习能力,提升网络性能,本文提出一种基于级联残差方法的Transformer网络优化结构进行图像超分辨率重建。首先,该网络采用级联残差结构,增强了网络对低阶和中阶特征的迭代复用和信息共享能力;其次,将通道注意力机制引入Transformer结构中,增强网络的特征表达和自适应学习通道权重的能力;最后,优化Transformer网络结构中的感知模块为级联感知模块,扩展网络深度,增强模型的特征表达能力。在数据集Set5,Set14,BSD100,Urban100和Manga109上进行放大2倍、3倍和4倍的重建测试并与主流方法进行对比,客观评价结果表明,在4倍放大因子的Set5数据集下,本文方法所得图像的峰值信噪比对比其他主流方法平均值提升1.14 dB,结构相似度平均值提升0.019。结合主观评价结果表明,本文方法相比其他主流方法的图像重建效果更好,恢复得到的图像纹理细节更清晰。 展开更多
关键词 卷积神经网络 图像分辨率重建 残差网络 TRANSFORMER 注意力机制
下载PDF
基于卷积神经网络的深度图像超分辨率重建方法 被引量:36
13
作者 李伟 张旭东 《电子测量与仪器学报》 CSCD 北大核心 2017年第12期1918-1928,共11页
为了更有效地提高深度图像的分辨率,构建了一种更深层次的深度图像超分辨率重建的卷积神经网络。该网络直接将低分辨率深度图像作为网络的初始输入,通过卷积神经网络学习图像的高阶表示,获得更具有表达能力的深层特征,同时在网络的输出... 为了更有效地提高深度图像的分辨率,构建了一种更深层次的深度图像超分辨率重建的卷积神经网络。该网络直接将低分辨率深度图像作为网络的初始输入,通过卷积神经网络学习图像的高阶表示,获得更具有表达能力的深层特征,同时在网络的输出层引入亚像素卷积层,针对提取到的特征学习不同上采样滤波器,实现上采样放大操作。为了实现网络更好地收敛,在网络中加入了残差网络结构。在4个常用数据集上的实验结果表明,与其他先进方法相比,该方法网络收敛速度更快,并可以有效地保护图像的边缘结构,解决伪影问题,且在定性和定量两方面均取得了很好的重建效果。 展开更多
关键词 深度图像 分辨率重建 卷积神经网络 残差网络结构
下载PDF
基于改进卷积神经网络的单幅图像超分辨率重建方法 被引量:26
14
作者 刘月峰 杨涵晰 +1 位作者 蔡爽 张晨荣 《计算机应用》 CSCD 北大核心 2019年第5期1440-1447,共8页
对于重建图像存在的边缘失真和纹理细节信息模糊的问题,提出一种基于改进卷积神经网络(CNN)的图像超分辨率重建方法。首先在底层特征提取层以三种插值方法和五种锐化方法进行多种预处理操作,并将只进行一次插值操作的图像和先进行一次... 对于重建图像存在的边缘失真和纹理细节信息模糊的问题,提出一种基于改进卷积神经网络(CNN)的图像超分辨率重建方法。首先在底层特征提取层以三种插值方法和五种锐化方法进行多种预处理操作,并将只进行一次插值操作的图像和先进行一次插值后进行一次锐化的图像合并排列成三维矩阵;然后在非线性映射层将预处理后构成的三维特征映射作为深层残差网络的多通道输入,以获取更深层次的纹理细节信息;最后在重建层为减少图像重建时间在网络结构中引入亚像素卷积来完成图像重建操作。在多个常用数据集上的实验结果表明,与经典方法相比,所提方法重建图像的纹理细节信息和高频信息能得到更好的恢复,峰值信噪比(PSNR)平均增加0.23 dB,结构相似性(SSIM)平均增加0.006 6。在保证图像重建时间的前提下,所提方法更好地保持重建图像的纹理细节并减少图像边缘失真,提升重建图像的性能。 展开更多
关键词 单幅图像分辨率重建 深度学习 卷积神经网络 多通道卷积 亚像素卷积
下载PDF
基于全方位深层加权轻量化网络的冠脉造影图像超分辨率重建方法
15
作者 张博伟 何彦霖 +2 位作者 王康 黄宇辰 祝连庆 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第7期200-209,共10页
针对介入手术中对冠状动脉造影图像纹理清晰的需求,本文提出一种基于全方位深层加权轻量化网络的超分辨率图像重建方法。首先通过设计局部卷积模块,降低特征图的维度减小其参数量,加快模型的处理速度;接着采用自注意力机制模块,融合图... 针对介入手术中对冠状动脉造影图像纹理清晰的需求,本文提出一种基于全方位深层加权轻量化网络的超分辨率图像重建方法。首先通过设计局部卷积模块,降低特征图的维度减小其参数量,加快模型的处理速度;接着采用自注意力机制模块,融合图像的通道和空间信息,获得图像的丰富高频细节特征;此外,为了进一步提取图像的深层特征信息,研究设计了级联和权重匹配的层注意力结构,为图像不同深度的特征分配不同的权重,实现图像的超分辨率重建。最后为了使本文所研究方法在真实介入手术冠脉造影图像中有更强的泛化能力,本文构建了冠脉造影图像数据集(CAID)用于网络模型的训练和测试。实验测试结果表明,与Omni-SR算法相比,本文所提出算法在参数量减少32.3%、运行时间减少17.74%的同时,其重建图像的质量在客观指标和主观感受上均优于其他对比算法,且在放大倍数为4时,PSNR和SSIM的平均值在CAID数据集上分别提高了0.72 dB和0.012 2,在公共数据集上分别提高了0.13 dB和0.004 4。 展开更多
关键词 冠脉造影图像 分辨率重建 局部卷积 注意力机制 轻量化
下载PDF
基于双通道卷积神经网络算法的视频处理超分辨率增强方法
16
作者 唐天聪 《信息与电脑》 2023年第2期194-196,共3页
为提高视频清晰度,引进双通道卷积神经网络算法,设计了一种针对视频处理过程的超分辨率增强方法。将视频录入计算机,建立视频信息与输入特征之间的级联关系,提取视频处理中的图像边缘纹理信息;引进双通道卷积神经网络算法,使用3×3... 为提高视频清晰度,引进双通道卷积神经网络算法,设计了一种针对视频处理过程的超分辨率增强方法。将视频录入计算机,建立视频信息与输入特征之间的级联关系,提取视频处理中的图像边缘纹理信息;引进双通道卷积神经网络算法,使用3×3的滤波处理器,提取视频特征信息,将提取的信息映射到双通道3×3区域中,匹配视频的矢量信息;引进Pair-wise模型将输入的低分辨率图像作为模型的分支,通过训练分支得到一个针对处理视频特征的字典,并据此生成高分辨率图像块。实验结果证明,设计方法可以在提高视频清晰度的同时,提高视频峰值信噪比,达到优化视频处理效果的目的。 展开更多
关键词 双通道 卷积神经网络算法 视频处理 边缘纹理 增强方法 分辨率
下载PDF
基于蓝图可分离残差蒸馏网络的图像超分辨率重建
17
作者 熊荣盛 王帮海 杨夏宁 《广东工业大学学报》 CAS 2024年第2期65-72,共8页
标准卷积的单图像超分辨率重建性能受限于堆叠网络层的冗余性,算法难以实施,特征提取层单一的残差结构也无法高效地利用卷积得到的特征信息。为改善上述问题,本文改进残差蒸馏结构,提出残差蒸馏复用模块,以减少残差蒸馏过程中图像高频... 标准卷积的单图像超分辨率重建性能受限于堆叠网络层的冗余性,算法难以实施,特征提取层单一的残差结构也无法高效地利用卷积得到的特征信息。为改善上述问题,本文改进残差蒸馏结构,提出残差蒸馏复用模块,以减少残差蒸馏过程中图像高频信息的损失;此外,将基础残差块替换为蓝图可分离卷积,解耦特征图的空间相关性,以降低高相关性特征的权重,提高卷积的效率,降低参数量。为验证算法的性能,在Set5等标准数据集中对算法进行验证。实验结果表明,该算法模型的峰值信噪比(Peak Signal-To-Noise Ratio, PSNR)和结构相似度(Structural Similarity, SSIM)相比于基于残差蒸馏网络的轻量级图像超分辨率重建网络分别有0.06~0.25 d B与0.004~0.012的提升。 展开更多
关键词 图像分辨率重建 残差蒸馏 蓝图可分离卷积 特征融合
下载PDF
基于深度卷积神经网络的图像超分辨率重建方法 被引量:9
18
作者 谢超 朱泓宇 《传感器与微系统》 CSCD 2020年第9期142-145,共4页
为了更好地对图像进行分辨率增强,提出了一种基于卷积神经网络的图像超分辨率算法。该方法在将输入图像进行归一化后,主要通过残差学习、取消批规范化结构的方式构建深层神经网络,并进行训练。通过主客观对比实验验证了该设计的图像超... 为了更好地对图像进行分辨率增强,提出了一种基于卷积神经网络的图像超分辨率算法。该方法在将输入图像进行归一化后,主要通过残差学习、取消批规范化结构的方式构建深层神经网络,并进行训练。通过主客观对比实验验证了该设计的图像超分辨率增强方法的有效性,以及相较于其他传统同类方法的优越性。 展开更多
关键词 分辨率重建 卷积神经网络 残差学习 批规范化
下载PDF
基于模糊核估计的图像盲超分辨率神经网络 被引量:1
19
作者 李公平 陆耀 +2 位作者 王子建 吴紫薇 汪顺舟 《自动化学报》 EI CAS CSCD 北大核心 2023年第10期2109-2121,共13页
模糊图像的超分辨率重建具有挑战性并且有重要的实用价值.为此,提出一种基于模糊核估计的图像盲超分辨率神经网络(Blurred image blind super-resolution network via kernel estimation,BESRNet).该网络主要包括两个部分:模糊核估计网... 模糊图像的超分辨率重建具有挑战性并且有重要的实用价值.为此,提出一种基于模糊核估计的图像盲超分辨率神经网络(Blurred image blind super-resolution network via kernel estimation,BESRNet).该网络主要包括两个部分:模糊核估计网络(Blur kernel estimation network,BKENet)和模糊核自适应的图像重建网络(Kernel adaptive superresolution network,SRNet).给定任意低分辨率图像(Low-resolution image,LR),首先利用模糊核估计子网络从输入图像估计出实际的模糊核,然后根据估计到的模糊核,利用模糊核自适应的图像重建子网络完成输入图像的超分辨率重建.与其他图像盲超分辨率方法不同,所提出的模糊核估计网络能够显式地从输入低分辨率图像中估计出完整的模糊核,然后模糊核自适应的图像重建网络根据估计到的模糊核,动态地调整网络各层的图像特征,从而适应不同输入图像的模糊.在多个基准数据集上进行了有效性实验,定性和定量的结果都表明该网络优于同类的图像盲超分辨率神经网络. 展开更多
关键词 模糊图像 模糊核估计 卷积神经网络 分辨率
下载PDF
深度卷积神经网络图像超分辨率重建方法研究 被引量:3
20
作者 冯蕾 黄菊秀 赵冉冉 《现代科学仪器》 2022年第1期205-208,共4页
本文为了解决现有算法重建超分辨率算法,所需较长训练时间的问题,提出一种更加高效的深度卷积神经网络图像超分辨率重建方法。该方法可以在保证每层卷积层、非线性层基础上,包含20层卷积神经网络,每层级联构建神经网络结构,通过运用此... 本文为了解决现有算法重建超分辨率算法,所需较长训练时间的问题,提出一种更加高效的深度卷积神经网络图像超分辨率重建方法。该方法可以在保证每层卷积层、非线性层基础上,包含20层卷积神经网络,每层级联构建神经网络结构,通过运用此方法于低分辨率图像中,可以提取图像特征,利用此算法残差学习获取高频信息,LIR结合预测高频信息即可重建高频率图像。训练中利用裁剪梯度避免爆破,保证训练平稳与图像重建的高效性。该方法经仿真表明较原始方法图像处理性能明显提升,有效改善主观视觉体验,获取的低分辨率图像重建后PSNR值最大可提升0.19,各客观评价指标也明显提升,证明该方法的有效性。 展开更多
关键词 分辨率复原 深度卷积神经网络 特征提取
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部