网络安全态势要素提取是开展网络安全态势感知的前提性基础工作,同时也是直接影响网络安全态势感知系统性能的关键性工作之一。文章针对在复杂异构的网络环境下网络安全态势要素难以提取的问题,提出了一种基于粗糙集属性约简(Rough Set ...网络安全态势要素提取是开展网络安全态势感知的前提性基础工作,同时也是直接影响网络安全态势感知系统性能的关键性工作之一。文章针对在复杂异构的网络环境下网络安全态势要素难以提取的问题,提出了一种基于粗糙集属性约简(Rough Set Attribute Reduction, RSAR )的随机森林网络安全态势要素提取方法。在该提取方法中,首先通过粗糙集理论确定数据集中每个属性的重要性,对重要程度低的属性进行约简,删除冗余属性;然后,使用随机森林分类器对约简后的数据集进行分类训练。为验证提出方法的有效性,文章使用入侵检测数据集对提出方法进行实验测试,实验结果表明,通过与传统提取方法相比,该方法有效地提高了态势要素提取的准确性,实现了高效提取网络安全态势要素。展开更多
文摘计算机与网络技术的发展,使得大部分行业已经进入深度的网络融合应用阶段。计算机网络的高性能和高效率在为人类社会带来福利的同时,也因网络安全问题给社会运转带来威胁。特别是随着诸如网络功能虚拟化(Network Functions Virtualization,NFV)、软件定义网络(Software Defined Network,SDN)等技术得以实施和应用的今天,迥异于传统物理网络结构的虚拟化网络,使得人们在应对网络安全问题时面临新的挑战,特别是在网络安全态势预测方面。基于此,针对NFV与SDN高度融合环境下的网络安全态势预测方案进行研究和探讨,构建编码网络模型,对该环境下的网络安全态势要素进行提取,并利用基于注意力机制的循环门控单元预测方法,建立网络模型,以实现网络安全态势预测。该方案弥补了传统网络安全态势预测方案在准确度、适应性等方面的不足,期望能够为网络安全态势预测的相关研究与应用提供帮助。