Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links ...Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.展开更多
Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading a...Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.展开更多
The two key mechanisms for biologically driven carbon sequestration in oceans are the biological pump(BP) and the microbial carbon pump(MCP); the latter is scarcely simulated and quantified in the China seas. In this ...The two key mechanisms for biologically driven carbon sequestration in oceans are the biological pump(BP) and the microbial carbon pump(MCP); the latter is scarcely simulated and quantified in the China seas. In this study, we developed a coupled physical-ecosystem model with major MCP processes in the South China Sea(SCS). The model estimated a SCSaveraged MCP rate of 1.55 mg C m^(-2) d^(-1), with an MCP-to-BP ratio of 1:6.08 when considering the BP at a depth of 1000 m.Moreover, the ecosystem responses were projected in two representative global warming scenarios where the sea surface temperature increased by 2 and 4°C. The projection suggested a declined productivity associated with the increased near-surface stratification and decreased nutrient supply, which leads to a reduction in diatom biomass and consequently the suppression of the BP. However, the relative ratio of picophytoplankton increased, inducing a higher microbial activity and a nonlinear response of MCP to the increase in temperature. On average, the ratio of MCP-to-BP at a 1000-m depth increased to 1:5.95 with surface warming of 4°C, indicating the higher impact of MCP in future ocean carbon sequestration.展开更多
文摘Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.
基金supported by the National Natural Science Foundation of China(Grant Nos.51239006,91215301 and 51479098)
文摘Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.
基金supported by the National Basic Research Program (Grant No. 2013CB955704)the National Program on Global Change and Air-Sea Interaction (Grant No. GASI-03-01-02-05)+1 种基金partially supported by the SOA Global Change and Air-Sea Interaction Project (Grant No. GASI-IPOVAI-01–04)the National Natural Science Foundation of China (Grant Nos. 41630963, 41476007 & 41476005)
文摘The two key mechanisms for biologically driven carbon sequestration in oceans are the biological pump(BP) and the microbial carbon pump(MCP); the latter is scarcely simulated and quantified in the China seas. In this study, we developed a coupled physical-ecosystem model with major MCP processes in the South China Sea(SCS). The model estimated a SCSaveraged MCP rate of 1.55 mg C m^(-2) d^(-1), with an MCP-to-BP ratio of 1:6.08 when considering the BP at a depth of 1000 m.Moreover, the ecosystem responses were projected in two representative global warming scenarios where the sea surface temperature increased by 2 and 4°C. The projection suggested a declined productivity associated with the increased near-surface stratification and decreased nutrient supply, which leads to a reduction in diatom biomass and consequently the suppression of the BP. However, the relative ratio of picophytoplankton increased, inducing a higher microbial activity and a nonlinear response of MCP to the increase in temperature. On average, the ratio of MCP-to-BP at a 1000-m depth increased to 1:5.95 with surface warming of 4°C, indicating the higher impact of MCP in future ocean carbon sequestration.