期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
APPLICATION OF INTEGRATED INTELLIGENT METHODOLOGY TO PREDICT STABILITY AND SUPPORTING DECISION IN UNDERGROUND DRIFT 被引量:2
1
作者 来兴平 伍永平 +1 位作者 张冰川 蔡美峰 《Journal of Coal Science & Engineering(China)》 2000年第1期40-44,共5页
The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been r... The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been regarded as a high level question in the architecture, bridge, tunnel, hydraulic, etc engineering fields.Approaches an integrated intelligent methodology to predict stability and supporting decision in underground drift based on neural network modelling on coal rock mechanical problem is proposed.By the terms of the non linearity numerical simulation, this paper develops integrated intelligent methodology to research on the structure hazardous response strata soft rock drifts. 展开更多
关键词 integrated intelligent methodology neural network numerical simulation
全文增补中
荧光原位杂交技术在胚胎植入前性别诊断中的应用 被引量:26
2
作者 徐艳文 庄广伦 +3 位作者 李满 舒益民 周灿权 张敏芳 《中华妇产科杂志》 CAS CSCD 北大核心 2000年第8期465-467,共3页
目的 探讨荧光原位杂交技术在人类胚胎植入前性别诊断中的应用价值。方法 对 2例甲型血友病基因携带者和 2例Y染色体异常的患者进行了 5个周期的超排卵治疗 ,胚胎活检后取单个细胞进行固定 ,然后用荧光原位杂交技术检测胚胎的性别 ,... 目的 探讨荧光原位杂交技术在人类胚胎植入前性别诊断中的应用价值。方法 对 2例甲型血友病基因携带者和 2例Y染色体异常的患者进行了 5个周期的超排卵治疗 ,胚胎活检后取单个细胞进行固定 ,然后用荧光原位杂交技术检测胚胎的性别 ,最后选择女性胚胎移植入子宫腔。结果  4例患者 5个治疗周期共取卵 110个 ,受精率为 6 8.2 % ,可供活检的胚胎 5 5个 ,活检成功率为85 .5 % ,活检后继续分裂率为 6 1.7% ,活检细胞固定率为 97.9% ,共诊断出 18个女性胚胎 ,移植了 16个 ,获得 1例生化妊娠和 2例临床妊娠 ,并分别在羊水细胞和减胎组织中证实了其诊断的准确性。结论 荧光原位杂交技术用于遗传病的植入前诊断准确、有效。对血友病等进行植入前性别诊断 ,可以避免选择性流产和重型患儿的出生。 展开更多
关键词 植入前诊断 原位杂交 荧光 决定(分析)
原文传递
OPTIMAL HIERARCHY STRUCTURES FOR MULTI-ATTRIBUTE-CRITERIA DECISIONS 被引量:2
3
作者 Stan LIPOVETSKY 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第2期228-242,共15页
A problem of a hierarchy structure optimization is considered.Hierarchical structures arewidely used in the Analytic Hierarchy Process,conjoint analysis,and various other methods of multiplecriteria decision making.Th... A problem of a hierarchy structure optimization is considered.Hierarchical structures arewidely used in the Analytic Hierarchy Process,conjoint analysis,and various other methods of multiplecriteria decision making.The problem consists in finding a structure that needs a minimum number ofpair comparisons for a given total number of the alternatives.For an optimal hierarchy,the minimumefforts are needed for eliciting data and synthesizing the local preferences across the hierarchy to getthe global priorities or utilities.Special estimation techniques are developed and numerical simulationsperformed.Analytical and numerical results suggest optimal ways of priority evaluations for practicalmanagerial decisions in a complex environment. 展开更多
关键词 Analytic Hierarchy Process conjoint analysis hierarchy optimization pair comparisons.
原文传递
glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models 被引量:14
4
作者 Jiangshan Lai Yi Zou +2 位作者 Shuang Zhang Xiaoguang Zhang Lingfeng Mao 《Journal of Plant Ecology》 SCIE CSCD 2022年第6期1302-1307,共6页
Generalized linear mixed models(GLMMs)have been widely used in contemporary ecology studies.However,determination of the relative importance of collinear predictors(i.e.fixed effects)to response variables is one of th... Generalized linear mixed models(GLMMs)have been widely used in contemporary ecology studies.However,determination of the relative importance of collinear predictors(i.e.fixed effects)to response variables is one of the challenges in GLMMs.Here,we developed a novel R package,glmm.hp,to decompose marginal R2^(2)explained by fixed effects in GLMMs.The algorithm of glmm.hp is based on the recently proposed approach‘average shared variance’i.e.used for multivariate analysis.We explained the principle and demonstrated the use of this package by simulated dataset.The output of glmm.hp shows individual marginal R2^(2)s that can be used to evaluate the relative importance of predictors,which sums up to the overall marginal R2^(2).Overall,we believe the glmm.hp package will be helpful in the interpretation of GLMM outcomes. 展开更多
关键词 coefficient of determination commonality analysis fixed effect GLMM hierarchical partitioning marginal R2^(2) relative importance variance partitioning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部