期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
性发育异常发病机制的研究进展 被引量:1
1
作者 王春庆 田秦杰 《国际生殖健康/计划生育杂志》 CAS 2013年第5期361-364,共4页
正常的性腺分化可分为3个过程:原始性腺形成、性别决定和卵巢/睾丸发育。在任一环节中,基因表达或调控发生异常均有可能导致性发育异常疾病的发生。性发育异常是指染色体、性腺和解剖性别不典型。随着分子生物学技术的发展,不断地发现... 正常的性腺分化可分为3个过程:原始性腺形成、性别决定和卵巢/睾丸发育。在任一环节中,基因表达或调控发生异常均有可能导致性发育异常疾病的发生。性发育异常是指染色体、性腺和解剖性别不典型。随着分子生物学技术的发展,不断地发现新的基因或信号通路参与性腺分化和发育,如SRY、SF1、WT1、Sox9等基因与睾丸发育密切相关,Wnt/Rspo1/B连环蛋白通路、Dax1、Foxl2等基因在卵巢分化中发挥着重要作用,一些非编码RNA和转化生长因子也有重要的调节功能,且睾丸和卵巢发育均为主动过程,即使在出生后因某些基因的改变两者间也可出现横向分化。这些为揭示性分化异常的发病机制提供了可能。 展开更多
关键词 睾丸 卵巢 腺发育不全 Y染色体 性决定(分析) 微RNAS 信号传导
下载PDF
APPLICATION OF INTEGRATED INTELLIGENT METHODOLOGY TO PREDICT STABILITY AND SUPPORTING DECISION IN UNDERGROUND DRIFT 被引量:2
2
作者 来兴平 伍永平 +1 位作者 张冰川 蔡美峰 《Journal of Coal Science & Engineering(China)》 2000年第1期40-44,共5页
The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been r... The present study shows that naturally the enormous engineering structure interaction with medium material, geometry or non linearity hazardous simulation experiment, response analysis and computing theory have been regarded as a high level question in the architecture, bridge, tunnel, hydraulic, etc engineering fields.Approaches an integrated intelligent methodology to predict stability and supporting decision in underground drift based on neural network modelling on coal rock mechanical problem is proposed.By the terms of the non linearity numerical simulation, this paper develops integrated intelligent methodology to research on the structure hazardous response strata soft rock drifts. 展开更多
关键词 integrated intelligent methodology neural network numerical simulation
全文增补中
OPTIMAL HIERARCHY STRUCTURES FOR MULTI-ATTRIBUTE-CRITERIA DECISIONS 被引量:2
3
作者 Stan LIPOVETSKY 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第2期228-242,共15页
A problem of a hierarchy structure optimization is considered.Hierarchical structures arewidely used in the Analytic Hierarchy Process,conjoint analysis,and various other methods of multiplecriteria decision making.Th... A problem of a hierarchy structure optimization is considered.Hierarchical structures arewidely used in the Analytic Hierarchy Process,conjoint analysis,and various other methods of multiplecriteria decision making.The problem consists in finding a structure that needs a minimum number ofpair comparisons for a given total number of the alternatives.For an optimal hierarchy,the minimumefforts are needed for eliciting data and synthesizing the local preferences across the hierarchy to getthe global priorities or utilities.Special estimation techniques are developed and numerical simulationsperformed.Analytical and numerical results suggest optimal ways of priority evaluations for practicalmanagerial decisions in a complex environment. 展开更多
关键词 Analytic Hierarchy Process conjoint analysis hierarchy optimization pair comparisons.
原文传递
glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models 被引量:14
4
作者 Jiangshan Lai Yi Zou +2 位作者 Shuang Zhang Xiaoguang Zhang Lingfeng Mao 《Journal of Plant Ecology》 SCIE CSCD 2022年第6期1302-1307,共6页
Generalized linear mixed models(GLMMs)have been widely used in contemporary ecology studies.However,determination of the relative importance of collinear predictors(i.e.fixed effects)to response variables is one of th... Generalized linear mixed models(GLMMs)have been widely used in contemporary ecology studies.However,determination of the relative importance of collinear predictors(i.e.fixed effects)to response variables is one of the challenges in GLMMs.Here,we developed a novel R package,glmm.hp,to decompose marginal R2^(2)explained by fixed effects in GLMMs.The algorithm of glmm.hp is based on the recently proposed approach‘average shared variance’i.e.used for multivariate analysis.We explained the principle and demonstrated the use of this package by simulated dataset.The output of glmm.hp shows individual marginal R2^(2)s that can be used to evaluate the relative importance of predictors,which sums up to the overall marginal R2^(2).Overall,we believe the glmm.hp package will be helpful in the interpretation of GLMM outcomes. 展开更多
关键词 coefficient of determination commonality analysis fixed effect GLMM hierarchical partitioning marginal R2^(2) relative importance variance partitioning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部