The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ...The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.展开更多
In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre...In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.展开更多
To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-deg...To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-degree-of-freedom(3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization(SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key parameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpolation. Simulation results show that vehicle parameter outputs of the simplified model and Truck Sim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity(CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the Truck Sim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.展开更多
基金Project (50934006) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of ChinaProject (CX2011B119) supported by the Graduated Students’ Research and Innovation Fund Project of Hunan Province of China
文摘The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.
基金Project F010206 supported by the National Natural Science Foundation of China
文摘In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.
基金supported by the Program for Changjiang ScholarsInnovative Research Team in University,China(No.IRT0626)
文摘To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-degree-of-freedom(3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization(SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key parameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpolation. Simulation results show that vehicle parameter outputs of the simplified model and Truck Sim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity(CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the Truck Sim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.