In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech...In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.展开更多
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc...In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.展开更多
A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechan...A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix.展开更多
The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and el...The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.展开更多
To optimize the solution treatment process of a modified high-pressure die-cast AlSi10MnMg alloy, the influence of the solution treatment on the microstructure, mechanical properties and fracture mechanisms was studie...To optimize the solution treatment process of a modified high-pressure die-cast AlSi10MnMg alloy, the influence of the solution treatment on the microstructure, mechanical properties and fracture mechanisms was studied using OM, SEM, EBSD and tensile test. The experimental results suggest that the solution treatment could be completed in a shorter time at a temperature much lower than the conventional practice. Surface blistering could be avoided and substantial strengthening effect could be achieved in the following aging process. Prolonging solution treatment time and elevating solution temperature would be meaningless or even harmful. The rapid evolution of eutectic silicon during solution treatment, especially at the early stage, affected the way of interaction among α-Al grains during plastic deformation, and changed the ultimate mechanical properties and fracture mode.展开更多
A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and tra...A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The catalytic activity of these catalysts was evaluated for the selective catalytic reduction(SCR) of NO with NH_3 as reductant in the presence of oxygen.The results revealed that the catalytic activity of Cu-ZSM-5 nanocatalyst for NO conversion to N_2 was 80%at 300 ℃,which was the best among various promoted metals.Design of experiments(DOEs) with Taguchi method was employed to optimize NH_3-SCR process parameters such as NH_3/NO ratio,O_2 concentration,and gas hourly space velocity(GHSV) over Cu-ZSM-5 nanocatalyst at 250 and 300 ℃.Results showed that the most important parameter in NH_3-SCR of NO is O_2 concentration;followed by NH_3/NO ratio and GHSV has little importance.The NO conversion to N_2 of 63.1%and 94.86%was observed at 250℃ and 300℃,respectively under the obtained optimum conditions.展开更多
A new unsymmetrical Schiff base ligand (H2LLi) was synthesized using L-lysine, salicylaldehyde and 2-hydroxy-1-naphthaldehyde. Three solid metal complexes of this ligand \[Ln(H2L)(NO3)\] NO3·2H2O (Ln=La, Sm, Ho) ...A new unsymmetrical Schiff base ligand (H2LLi) was synthesized using L-lysine, salicylaldehyde and 2-hydroxy-1-naphthaldehyde. Three solid metal complexes of this ligand \[Ln(H2L)(NO3)\] NO3·2H2O (Ln=La, Sm, Ho) have been prepared and characterized by elemental analyses, IR spectra, UV spectra, TG-DTG and molar conductance. The antibacterial activities of the ligand and its complexes are also studied. The antibacterial experiments indicate that the ligand and its complexes possess antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis and that the complexes have higher activity than those of the ligand.展开更多
The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on i...The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.展开更多
To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteris...To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteristic of mass loss and gas products generated during pyrolysis of the sludge with ZnCl2 activation were analyzed by thermogravimetric analysis coupled with Fourier Transform Infrared Spectroscopy (TG-FTIR).The kinetic parameters were calculated by the Coats-Redfem method and the mechanism models were established.The role of ZnCl2 in the pyrolysis process of the sludge with ZnCl2 activation was also illustrated through the comparison of the pyrolysis characteristics and kinetics of the sludge with and without ZnCl2 activation.The results showed that the pyrolysis process of the sludge with ZnCl2 activation can be divided into four stages including the dehydration of sludge and initial depolymerization of a small portion of organics matters,the decomposition of large molecular organic matters into small molecular intermediates,the further degradation of intermediates and volatilization of ZnCl2,and the decomposition of inorganic minerals and undecomposed organic matters.CO2,CO,CH4,H2O,some aldehydes and carboxylic acids are the major pyrolysis gaseous products.The activation energies and pre-exponential factors are in the range of 28.84-206.42 kJ/mol and 9885.16-8.08× 1011 min-1,respectively.During the pyrolysis of sludge,ZnC12 not only can function as a dehydration agent and inhibit the formation of tar,but also can peptize the organic matters in the sludge,making them easier to be decomposed.展开更多
This article refers to the first commercial application of upflow residuum hydrotreating serial catalyst, developed by Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), in the residuum hydrotreating u...This article refers to the first commercial application of upflow residuum hydrotreating serial catalyst, developed by Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), in the residuum hydrotreating unit at Shengli refinery of Qilu Petrochemical Company. This catalyst features large pore volume and large pore diameter. The production practice for more than one year has revealed that the domestic upflow residuum hydrotreating catalyst has shown good performance and stability over the whole period of operation despite its high activity at the start of run, and has basically reached the level of similar imported catalyst.展开更多
The effect of rolling processing on the microstructure,electrochemical property and anti-corrosion property of Al-Mg-Sn-Bi-Ga-In alloy anode in alkaline solution(80℃,Na2SnO3+5 mol/L NaOH)was analyzed by the chronopot...The effect of rolling processing on the microstructure,electrochemical property and anti-corrosion property of Al-Mg-Sn-Bi-Ga-In alloy anode in alkaline solution(80℃,Na2SnO3+5 mol/L NaOH)was analyzed by the chronopotentiometry (E-T curves),hydrogen collection tests and modern microstructure analysis.The results show that when the rolling temperature is 370℃,the electrochemical activity of Al anode decreases gradually with the increase of pass deformation in rolling,while the anti-corrosion property is improved in the beginning and then declined rapidly.When the pass deformation of rolling is 40%,the Al anode has good electrochemical activity as good as the anti-corrosion property and with the increase of rolling temperature,both electrochemical activity and anti-corrosion property of Al anode increase first and then decrease.When the rolling temperature is 420 ℃,the aluminum alloy anode has the most negative electrode potential of about-1.521 V(vs Hg/HgO)and the lowest hydrogen evolution rate of 0.171 6 mL/(min·cm2).The optimum comprehensive performance of Al alloy anode is obtained.展开更多
The catalytic pyrolyses of rayon have been studied respectively by thermo-gravimetric analysis (TGA) when rayon was treated with phosphoric acid (PA), three ammonium phosphate salts and ammonium sulfate (AS). The air ...The catalytic pyrolyses of rayon have been studied respectively by thermo-gravimetric analysis (TGA) when rayon was treated with phosphoric acid (PA), three ammonium phosphate salts and ammonium sulfate (AS). The air is favorable to the catalysis of dibasic ammonium phosphate (DAP), but not to those of ADP, PA, AP, and AS obviously. It is put forward that a peak’s shape character can be described with the ratio of height to half-height-width (H/W /2) of the peak on a differential thermo-gravimetric (DTG) curve. A flat cracking peak, presenting a more moderate dehydration reaction, has a smaller ratio and could lead to higher carbonization and activation yields. The experimental results prove this view. According to expectation, the order of catalysis is: DAP≥ADP>PA> APAS no catalyst.展开更多
An investigation was carried out to eliminate the decrease of effluent pH value in carbon filter in O3-biological activated carbon process. The influence factors were examined in a pilot test, and pH was adjusted in t...An investigation was carried out to eliminate the decrease of effluent pH value in carbon filter in O3-biological activated carbon process. The influence factors were examined in a pilot test, and pH was adjusted in the pilot and waterworks. Results show that the carbon filter is an acid-base buffer system and the activated carbon is the key factor. Chemical functional groups on activated carbon surface present acid-base properties to buffer the water but decrease with time, so that effluent pH value decreases. The effects of ozone dosage, CO2 in the carbon filter, and the filter influent quality are negligible. A new method to adjust pH is developed: the activated carbon is first modified by soaking in sodium hydroxide solution to make its pH reach the desired value, and then the pH value of inflow is controlled to certain value by dosing lime in sand filter influent. The method is economical and effective.展开更多
In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPB...In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested.展开更多
Cracking gas compressor is usually a centrifugal compressor. The information on the performance of a centrifugal compressor under all conditions is not available, which restricts the operation optimization for compres...Cracking gas compressor is usually a centrifugal compressor. The information on the performance of a centrifugal compressor under all conditions is not available, which restricts the operation optimization for compressor. To solve this problem, two back propagation (BP) neural networks were introduced to model the performance of a compressor by using the data provided by manufacturer. The input data of the model under other conditions should be corrected according to the similarity theory. The method was used to optimize the system of a cracking gas compressor by embedding the compressor performance model into the ASPEN PLUS model of compressor. The result shows that it is an effective method to optimize the compressor system.展开更多
Petri net (PN) theory model was adopted for complexity in welding flexible manufacturing system (WFMS). A scheduling arithmetic was devised to optimize the process of controlling system. With this scheduling way, mode...Petri net (PN) theory model was adopted for complexity in welding flexible manufacturing system (WFMS). A scheduling arithmetic was devised to optimize the process of controlling system. With this scheduling way, model simulation experiment was designed to validate the model. And a sort of controlling software was designed on local net. Besides, a special welding experiment had been designed to check the controlling way. Results show the controlling process rightly and feasibly.展开更多
Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distrib...Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distribution,formation mechanism and mechanical properties of selective laser melting(SLM)-treated parts were systematically studied.It was found that the crack density(area ratio) increases from 0.15% to 0.87% in the XOY plane and from 0.21% to 1.81% in the XOZ plane along with the Zr content increase from 0.024 wt.% to 0.12 wt.% in the original powders.Solidification cracks are formed along the epitaxially grown <001>-oriented columnar grain boundaries in molten pool center.The ultimate tensile strength of Sample 1(0.024 wt.% Zr) is 1113 MPa,and there are dimples in tensile fracture.With an increase in the Zr content to 0.12 wt.%(Sample 2),the ultimate tensile strength of Sample 2 decreases to 610 MPa,and there are numerous original cracks and exposed columnar grain boundaries in tensile fracture.The optimization of printing parameters of Sample 2 considerably increases the ultimate tensile strength by 55.2% to 947 MPa,and the plasticity is greatly improved.展开更多
A new method was proposed for tracking the desired output of chaotic dy- namical system using the feedback linearization and nonlinear extended statement ob- server method. The feedback linearization was used to conve...A new method was proposed for tracking the desired output of chaotic dy- namical system using the feedback linearization and nonlinear extended statement ob- server method. The feedback linearization was used to convert the nonlinear chaotic system into linear system. The extended Luenberger-like statements observer was de- signed to reconstructing and observing the unmeasured statements when the tracking controller was designed. By this way, the chaotic system could be forced to track vari- able desired output, which could be a time variant function or an equilibrium points. Taken the Lorenz chaotic system as example, the simulation results show the validity of the conclusion and effectiveness of the algorithm.展开更多
The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of ...The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu_2 were a mixture of Cu, unknown hydride Ⅰ, and unknown hydride Ⅱ. Based on the PCT(pressure-concentration-temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy change ΔH and entropy change ΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51801079, 52001140)。
文摘In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.
基金Project(2014JZ012)supported by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province,China
文摘In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.
基金Project(51235010)supported by the National Natural Science Foundation of ChinaProject(2010CB731700)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by PhD Programs Foundation of Ministry of Education of China
文摘A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(2009WK2007)supported by Key Project of Science and Technology Department of Hunan Province,ChinaProject(CX2009B133)supported by Colleges and Universities in Hunan Province Plans to Graduate Research and Innovation,China
文摘The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.
基金Project(U1537202) supported by the National Natural Science Foundation of ChinaProject(BA2015041) supported by the Special Funding Program on Transformation of Scientific and Technological Achievements in Jiangsu Province,China
文摘To optimize the solution treatment process of a modified high-pressure die-cast AlSi10MnMg alloy, the influence of the solution treatment on the microstructure, mechanical properties and fracture mechanisms was studied using OM, SEM, EBSD and tensile test. The experimental results suggest that the solution treatment could be completed in a shorter time at a temperature much lower than the conventional practice. Surface blistering could be avoided and substantial strengthening effect could be achieved in the following aging process. Prolonging solution treatment time and elevating solution temperature would be meaningless or even harmful. The rapid evolution of eutectic silicon during solution treatment, especially at the early stage, affected the way of interaction among α-Al grains during plastic deformation, and changed the ultimate mechanical properties and fracture mode.
基金financial support from University of Tabriz and Iranian Nanotechnology Initiative
文摘A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The catalytic activity of these catalysts was evaluated for the selective catalytic reduction(SCR) of NO with NH_3 as reductant in the presence of oxygen.The results revealed that the catalytic activity of Cu-ZSM-5 nanocatalyst for NO conversion to N_2 was 80%at 300 ℃,which was the best among various promoted metals.Design of experiments(DOEs) with Taguchi method was employed to optimize NH_3-SCR process parameters such as NH_3/NO ratio,O_2 concentration,and gas hourly space velocity(GHSV) over Cu-ZSM-5 nanocatalyst at 250 and 300 ℃.Results showed that the most important parameter in NH_3-SCR of NO is O_2 concentration;followed by NH_3/NO ratio and GHSV has little importance.The NO conversion to N_2 of 63.1%and 94.86%was observed at 250℃ and 300℃,respectively under the obtained optimum conditions.
文摘A new unsymmetrical Schiff base ligand (H2LLi) was synthesized using L-lysine, salicylaldehyde and 2-hydroxy-1-naphthaldehyde. Three solid metal complexes of this ligand \[Ln(H2L)(NO3)\] NO3·2H2O (Ln=La, Sm, Ho) have been prepared and characterized by elemental analyses, IR spectra, UV spectra, TG-DTG and molar conductance. The antibacterial activities of the ligand and its complexes are also studied. The antibacterial experiments indicate that the ligand and its complexes possess antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis and that the complexes have higher activity than those of the ligand.
基金Project(2013AA064003)supported by the National High Technology Research and Development Program of ChinaProject(2012HB008)supported by Young and Middle-aged Academic Technology Leader Backup Talent Cultivation Program in Yunnan Province,China
文摘The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008106)
文摘To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteristic of mass loss and gas products generated during pyrolysis of the sludge with ZnCl2 activation were analyzed by thermogravimetric analysis coupled with Fourier Transform Infrared Spectroscopy (TG-FTIR).The kinetic parameters were calculated by the Coats-Redfem method and the mechanism models were established.The role of ZnCl2 in the pyrolysis process of the sludge with ZnCl2 activation was also illustrated through the comparison of the pyrolysis characteristics and kinetics of the sludge with and without ZnCl2 activation.The results showed that the pyrolysis process of the sludge with ZnCl2 activation can be divided into four stages including the dehydration of sludge and initial depolymerization of a small portion of organics matters,the decomposition of large molecular organic matters into small molecular intermediates,the further degradation of intermediates and volatilization of ZnCl2,and the decomposition of inorganic minerals and undecomposed organic matters.CO2,CO,CH4,H2O,some aldehydes and carboxylic acids are the major pyrolysis gaseous products.The activation energies and pre-exponential factors are in the range of 28.84-206.42 kJ/mol and 9885.16-8.08× 1011 min-1,respectively.During the pyrolysis of sludge,ZnC12 not only can function as a dehydration agent and inhibit the formation of tar,but also can peptize the organic matters in the sludge,making them easier to be decomposed.
文摘This article refers to the first commercial application of upflow residuum hydrotreating serial catalyst, developed by Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), in the residuum hydrotreating unit at Shengli refinery of Qilu Petrochemical Company. This catalyst features large pore volume and large pore diameter. The production practice for more than one year has revealed that the domestic upflow residuum hydrotreating catalyst has shown good performance and stability over the whole period of operation despite its high activity at the start of run, and has basically reached the level of similar imported catalyst.
基金Project(50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The effect of rolling processing on the microstructure,electrochemical property and anti-corrosion property of Al-Mg-Sn-Bi-Ga-In alloy anode in alkaline solution(80℃,Na2SnO3+5 mol/L NaOH)was analyzed by the chronopotentiometry (E-T curves),hydrogen collection tests and modern microstructure analysis.The results show that when the rolling temperature is 370℃,the electrochemical activity of Al anode decreases gradually with the increase of pass deformation in rolling,while the anti-corrosion property is improved in the beginning and then declined rapidly.When the pass deformation of rolling is 40%,the Al anode has good electrochemical activity as good as the anti-corrosion property and with the increase of rolling temperature,both electrochemical activity and anti-corrosion property of Al anode increase first and then decrease.When the rolling temperature is 420 ℃,the aluminum alloy anode has the most negative electrode potential of about-1.521 V(vs Hg/HgO)and the lowest hydrogen evolution rate of 0.171 6 mL/(min·cm2).The optimum comprehensive performance of Al alloy anode is obtained.
文摘The catalytic pyrolyses of rayon have been studied respectively by thermo-gravimetric analysis (TGA) when rayon was treated with phosphoric acid (PA), three ammonium phosphate salts and ammonium sulfate (AS). The air is favorable to the catalysis of dibasic ammonium phosphate (DAP), but not to those of ADP, PA, AP, and AS obviously. It is put forward that a peak’s shape character can be described with the ratio of height to half-height-width (H/W /2) of the peak on a differential thermo-gravimetric (DTG) curve. A flat cracking peak, presenting a more moderate dehydration reaction, has a smaller ratio and could lead to higher carbonization and activation yields. The experimental results prove this view. According to expectation, the order of catalysis is: DAP≥ADP>PA> APAS no catalyst.
基金Supported by the National Water Pollution Control and Harnessing Projects (2009ZX07423-003)
文摘An investigation was carried out to eliminate the decrease of effluent pH value in carbon filter in O3-biological activated carbon process. The influence factors were examined in a pilot test, and pH was adjusted in the pilot and waterworks. Results show that the carbon filter is an acid-base buffer system and the activated carbon is the key factor. Chemical functional groups on activated carbon surface present acid-base properties to buffer the water but decrease with time, so that effluent pH value decreases. The effects of ozone dosage, CO2 in the carbon filter, and the filter influent quality are negligible. A new method to adjust pH is developed: the activated carbon is first modified by soaking in sodium hydroxide solution to make its pH reach the desired value, and then the pH value of inflow is controlled to certain value by dosing lime in sand filter influent. The method is economical and effective.
基金Supported by China National Petroleum Corporation Innovation Foundation(No.J02060)and Subsidized by Special Funds for Major State Basic Research Projects(No.G1999064800)
文摘In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested.
基金Supported by the National Natural Science Foundation of China (20976048, 21176072)the Fundamental Research Funds for the Central Universities
文摘Cracking gas compressor is usually a centrifugal compressor. The information on the performance of a centrifugal compressor under all conditions is not available, which restricts the operation optimization for compressor. To solve this problem, two back propagation (BP) neural networks were introduced to model the performance of a compressor by using the data provided by manufacturer. The input data of the model under other conditions should be corrected according to the similarity theory. The method was used to optimize the system of a cracking gas compressor by embedding the compressor performance model into the ASPEN PLUS model of compressor. The result shows that it is an effective method to optimize the compressor system.
基金The National Natural Science Foundation of Chia(No5057144)
文摘Petri net (PN) theory model was adopted for complexity in welding flexible manufacturing system (WFMS). A scheduling arithmetic was devised to optimize the process of controlling system. With this scheduling way, model simulation experiment was designed to validate the model. And a sort of controlling software was designed on local net. Besides, a special welding experiment had been designed to check the controlling way. Results show the controlling process rightly and feasibly.
基金the financial supports from the Major Project of Science and Technology of Gansu Province,China(No.17ZD2GC011)the Hongliu First-class Discipline Construction Plan of Lanzhou University of Technology,China(No.CGZH001).
文摘Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distribution,formation mechanism and mechanical properties of selective laser melting(SLM)-treated parts were systematically studied.It was found that the crack density(area ratio) increases from 0.15% to 0.87% in the XOY plane and from 0.21% to 1.81% in the XOZ plane along with the Zr content increase from 0.024 wt.% to 0.12 wt.% in the original powders.Solidification cracks are formed along the epitaxially grown <001>-oriented columnar grain boundaries in molten pool center.The ultimate tensile strength of Sample 1(0.024 wt.% Zr) is 1113 MPa,and there are dimples in tensile fracture.With an increase in the Zr content to 0.12 wt.%(Sample 2),the ultimate tensile strength of Sample 2 decreases to 610 MPa,and there are numerous original cracks and exposed columnar grain boundaries in tensile fracture.The optimization of printing parameters of Sample 2 considerably increases the ultimate tensile strength by 55.2% to 947 MPa,and the plasticity is greatly improved.
基金Supported by National Natural Science Foundation of China (60374013) and Natural Science Foundation of Zhejiang Province (Y104414, M603217)
文摘A new method was proposed for tracking the desired output of chaotic dy- namical system using the feedback linearization and nonlinear extended statement ob- server method. The feedback linearization was used to convert the nonlinear chaotic system into linear system. The extended Luenberger-like statements observer was de- signed to reconstructing and observing the unmeasured statements when the tracking controller was designed. By this way, the chaotic system could be forced to track vari- able desired output, which could be a time variant function or an equilibrium points. Taken the Lorenz chaotic system as example, the simulation results show the validity of the conclusion and effectiveness of the algorithm.
基金Project(51276154)supported by the National Natural Science Foundation of ChinaProject(2012010111014)supported by the University Doctoral Subject Special Foundation of China
文摘The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu_2 were a mixture of Cu, unknown hydride Ⅰ, and unknown hydride Ⅱ. Based on the PCT(pressure-concentration-temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy change ΔH and entropy change ΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.