Seismic attributes have been widely used in oil and gas exploration and development. However, owing to the complexity of seismic wave propagation in subsurface media, the limitations of the seismic data acquisition sy...Seismic attributes have been widely used in oil and gas exploration and development. However, owing to the complexity of seismic wave propagation in subsurface media, the limitations of the seismic data acquisition system, and noise interference, seismic attributes for seismic data interpretation have uncertainties. Especially, the antinoise ability of seismic attributes directly affects the reliability of seismic interpretations. Gray system theory is used in time series to minimize data randomness and increase data regularity. Detrended fluctuation analysis (DFA) can effectively reduce extrinsic data tendencies. In this study, by combining gray system theory and DFA, we propose a new method called gray detrended fluctuation analysis (GDFA) for calculating the fractal scaling exponent. We consider nonlinear time series generated by the Weierstrass function and add random noise to actual seismic data. Moreover, we discuss the antinoise ability of the fractal scaling exponent based on GDFA. The results suggest that the fractal scaling exponent calculated using the proposed method has good antinoise ability. We apply the proposed method to 3D poststack migration seismic data from southern China and compare fractal scaling exponents calculated using DFA and GDFA. The results suggest that the use of the GDFA-calculated fractal scaling exponent as a seismic attribute can match the known distribution of sedimentary facies.展开更多
Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculat...Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).展开更多
D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated...D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.展开更多
With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatl...With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatly refined, with the single exception of the theoreticalvalue of Young's modulus for Pr which is slightly increased This points to the validityof the new theory, that the bulk modulus is independent of the Poisson's ratio, and further that the valency electron structures of solids as determined by Yu's theory are correct.展开更多
Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel...Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.展开更多
In order to avoid the discretization in the classical rough set theory, a generlization rough set theory is proposed. At first, the degree of general importance of an attribute and attribute subsets are presented. The...In order to avoid the discretization in the classical rough set theory, a generlization rough set theory is proposed. At first, the degree of general importance of an attribute and attribute subsets are presented. Then, depending on the degree of general importance of attribute, the space distance can be measured with weighted method. At last, a generalization rough set theory based on the general near neighborhood relation is proposed. The proposed theory partitions the universe into the tolerant modules, and forms lower approximation and upper approximation of the set under general near neighborhood relationship, which avoids the discretization in Pawlak's rough set theory.展开更多
This paper deals with the problem of attribute discernibility reduction and proposes some new concepts to rough set theory (RST) based on the discernibility matrix of Skowron, such as secondary core, regeneration ma...This paper deals with the problem of attribute discernibility reduction and proposes some new concepts to rough set theory (RST) based on the discernibility matrix of Skowron, such as secondary core, regeneration matrix and the degree of attribute discernibility (DAD). This paper puts forward an attribute reduction algorithm based on maximum discernibility degree, which opens up an effective way of gaining minimum attribute reduction of decision table. The efficacy of this algorithm has been verified by practical application in a diagnostic system of loader, which substantially decreases information gathering requirement and lowers the overall cost with no loss of accuracy.展开更多
We studied the electronic structure of the two new transition-metal carbodiimides CoNCN and NiNCN using first-principles method, which is based on density-functional theory (DFT). The density of states (DOS), the ...We studied the electronic structure of the two new transition-metal carbodiimides CoNCN and NiNCN using first-principles method, which is based on density-functional theory (DFT). The density of states (DOS), the total energy of the cell and the spin magnetic moment of CoNCN and NiNCN were calculated. The calculations reveal that the compound CoNCN and NiNCN have hall-metallic properties in ferromagnetic ground state, and the spin magnetic moment per molecule is about 7.000 μB and 6.000 μB for CoNCN and NiNCN, respectively.展开更多
Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation i...Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed.展开更多
The pseudopotential theory beyond second order with our well established single parametric model potential is employed to compute total crystal energy, static bulk modulus, energy band gap at the point X on the Jones-...The pseudopotential theory beyond second order with our well established single parametric model potential is employed to compute total crystal energy, static bulk modulus, energy band gap at the point X on the Jones-zone face and pressure-volume relation (equation of state under pressure) of Si, Ge and α-Sn using Nagy's static local field correction function. The results are compared with those obtained using few other local field correction functions. The present results of total energy are in good agreement with the experimental data. Bulk modulus calculated by Nagy's screening function is perfectly matching with the experimental results for Ge and α-Sn. Some deviation is found in the value of energy band gap.展开更多
We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamin...We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamine Mn3C12N12H12 [ChemPhysChem 16, 614 (2015)] mono-layers. By coordinating chalcogen (S or O) atoms and -NH- group to Mn atoms with trans- or cis-structures and preserving space inversion symmetry, four configurations of this type of nanosheet are obtained: trans-manganese dithiolene-diamine Mn3(C6S3N3H3)2, cis- manganese dithiolene-diamine Mn3(C6S6)(C6N6H6), trans-manganese dihydroxyl-diamine Mn3(C6O3N3H3)2, and cis-manganese dihydroxyl-diamine Mn3(C6O6)(C6N6H6). The ge- ometric con guration, electronic structure and magnetic properties of these metal-organic nanosheets are systematically explored by density functional theory calculations. The cal- culated results show that Mn3(C6S3N3H3)2, Mn3(C6O3N3H3)2 and Mn3(C6O6)(C6N6H6) monolayers exhibit half-metallicity and display strong ferromagnetism with Curie transition temperatures near and even beyond room temperature, and Mn3(C6S6)(C6N6H6) monolayer is a semiconductor with small energy gap and spin frustration ground state. The mechanisms for the above properties, especially in uences of diflerent groups (atoms) substitution and coordination style on the magnetism of the nanosheet, are also discussed. The predicted two-dimensional metal-organic nanosheets have great promise for the future spintronics ap-plications.展开更多
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra...The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.展开更多
In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structu...In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.展开更多
Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH3BH3 ) and metal amidoboranes (MAB, MNH2BH3), formed by substituting H atom in AB with one of main group metal atoms, h...Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH3BH3 ) and metal amidoboranes (MAB, MNH2BH3), formed by substituting H atom in AB with one of main group metal atoms, have been investigated by density-functional theory and optimized at the B3LYP levels with 6-311G++ (3dr, 3pd) basic set. Their structural parameters and infrared spectrum characteristic peaks have been predicted, which should be the criterion of a successfully synthesized material. Several parameters such as binding energies, vibrational frequencies, and the energy gaps between the HOMO and the LUMO have been adopted to characterize and evaluate their structure stabilities. It is also found that the binding energies and HOMO-LUMO energy gaps of the MAB obviously change with the substitution of the atoms. MgAB has the lowest binding energy and is easier to decompose than any other substitutional structures under same conditions, while CaAB has the highest chemical activity.展开更多
The relativistic mean-field (RMF) theory is used to calculate the properties of A =7-9 drip-line nuclei ^7Li, ^7;9Be, ^8;9B, and ^9C. Systematic deviations between experimental and theoretical binding energies are f...The relativistic mean-field (RMF) theory is used to calculate the properties of A =7-9 drip-line nuclei ^7Li, ^7;9Be, ^8;9B, and ^9C. Systematic deviations between experimental and theoretical binding energies are found. Possible reasons of these systematic deviations are discussed in terms of pairing energy. The root-mean-square (rms) radii of matter distributions for these nuclei agree with the experimental data quite well. The one-proton halo structure in ^8B is reproduced well, and the two-proton halo in ^9C is predicted. The calculations show that the RMF theory is valid in studying the properties of light drip-line nuclei.展开更多
The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential...The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.展开更多
Nitrogen molecules Nx have been the subject of much recent research because of their potential as high-energy materials. Many nitrogen molecules dissociate with very low barriers, including molecules such as acyclic N...Nitrogen molecules Nx have been the subject of much recent research because of their potential as high-energy materials. Many nitrogen molecules dissociate with very low barriers, including molecules such as acyclic N4 that are essentially unbound. A number of studies have reported the ability of heteroatoms to stabilize complex nitrogen molecules. In the present study, the energetic and electronic properties of scandium(Ⅰ) and titanium(Ⅱ) complexes with N2 and N4 are calculated and discussed. Dissociation energies and singlet-triplet energies are determined by theoretical calculations using second-order perturbation theory (MP2) in conjunction with the Dunning basis sets.展开更多
This study used density functional theory and the quantum transport method to investigate the interfacial coupling and spin transport of transition metals(TMs)with a Fe,Co,and Ni/2H-VSe_(2)hybrid nanostructure.Because...This study used density functional theory and the quantum transport method to investigate the interfacial coupling and spin transport of transition metals(TMs)with a Fe,Co,and Ni/2H-VSe_(2)hybrid nanostructure.Because the indirect coupling of TM-Se-V led to an obvious reduction of the magnetic moment and the disappearance of the half-metal characteristics of 2H-VSe_(2),the expected spin-filtering effect of individual TMs and 2H-VSe_(2)deteriorated at the contact region.Nevertheless,all the TM/2H-VSe_(2)-based dual-probe devices exhibited an interesting bias-dependent spin-injection efficiency with a maximum output spin-polarized current of 666 mA mm-1 in Co/2H-VSe_(2).The proposed TM/2H-VSe_(2)-based spin-field-effect transistor demonstrated outstanding performance.The Ni/2H-VSe_(2)-based transistor achieved a maximum output spin-polarized current of 3117 m A mm-1 and demonstrated a good switching characteristic of 106 mV dec-1.Importantly,all transistors achieved a widely tunable scale of spin-extraction efficiency ranging consistently between 96%and-92%with gate bias.These results indicate a promising candidate for use in high-performance spintronic devices.展开更多
The internal length scale(ILS)is a dominant parameter in strain gradient plasticity(SGP)theories,which helps to successfully explain the size effect of metals at the microscale.However,the ILS is usually introduced in...The internal length scale(ILS)is a dominant parameter in strain gradient plasticity(SGP)theories,which helps to successfully explain the size effect of metals at the microscale.However,the ILS is usually introduced into strain gradient frameworks for dimensional consistency and is model-dependent.Even now,its physical meaning,connection with the microstructure of the material,and dependence on the strain level have not been thoroughly elucidated.In the current work,Aifantis'SGP model is reformulated by incorporating a recently proposed power-law relation for strain-dependent ILS.A further extension of Aifantis'SGP model by including the grain size effect is conducted according to the Hall-Petch formulation,and then the predictions are compared with torsion experiments of thin wires.It is revealed that the ILS depends on the sample size and grain size simultaneously;these dependencies are dominated by the dislocation spacing and can be well described through the strain hardenmg exponent.Furthermore,both the original and generalized Aifantis models provide larger estimated values for the ILS than Fleck-Hutchinson's theory.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2012QNA62)the Natural Science Foundation of Jiangsu Province(Grant No.BK20130201)+1 种基金the Chinese Postdoctoral Science Foundation(Grant No.2014M551703)the National Natural Science Foundation of China(Grant No.41374140)
文摘Seismic attributes have been widely used in oil and gas exploration and development. However, owing to the complexity of seismic wave propagation in subsurface media, the limitations of the seismic data acquisition system, and noise interference, seismic attributes for seismic data interpretation have uncertainties. Especially, the antinoise ability of seismic attributes directly affects the reliability of seismic interpretations. Gray system theory is used in time series to minimize data randomness and increase data regularity. Detrended fluctuation analysis (DFA) can effectively reduce extrinsic data tendencies. In this study, by combining gray system theory and DFA, we propose a new method called gray detrended fluctuation analysis (GDFA) for calculating the fractal scaling exponent. We consider nonlinear time series generated by the Weierstrass function and add random noise to actual seismic data. Moreover, we discuss the antinoise ability of the fractal scaling exponent based on GDFA. The results suggest that the fractal scaling exponent calculated using the proposed method has good antinoise ability. We apply the proposed method to 3D poststack migration seismic data from southern China and compare fractal scaling exponents calculated using DFA and GDFA. The results suggest that the use of the GDFA-calculated fractal scaling exponent as a seismic attribute can match the known distribution of sedimentary facies.
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).
基金supported by the National Basic Research Program of China (973 Program) (No. 2009CB219603)Key Special National Project (No. 2008ZX05035)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.
文摘With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatly refined, with the single exception of the theoreticalvalue of Young's modulus for Pr which is slightly increased This points to the validityof the new theory, that the bulk modulus is independent of the Poisson's ratio, and further that the valency electron structures of solids as determined by Yu's theory are correct.
基金Project(2013CB036004) supported by National Basic Research Program(973)of ChinaProject(51378510) supported by National Natural Science Foundation of China
文摘Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.
基金Natural Science Foundation of Jiangsu Province of China ( No.BK2006176)High-Tech Key Laboratory of Jiangsu,China (No.BM2007201)
文摘In order to avoid the discretization in the classical rough set theory, a generlization rough set theory is proposed. At first, the degree of general importance of an attribute and attribute subsets are presented. Then, depending on the degree of general importance of attribute, the space distance can be measured with weighted method. At last, a generalization rough set theory based on the general near neighborhood relation is proposed. The proposed theory partitions the universe into the tolerant modules, and forms lower approximation and upper approximation of the set under general near neighborhood relationship, which avoids the discretization in Pawlak's rough set theory.
文摘This paper deals with the problem of attribute discernibility reduction and proposes some new concepts to rough set theory (RST) based on the discernibility matrix of Skowron, such as secondary core, regeneration matrix and the degree of attribute discernibility (DAD). This paper puts forward an attribute reduction algorithm based on maximum discernibility degree, which opens up an effective way of gaining minimum attribute reduction of decision table. The efficacy of this algorithm has been verified by practical application in a diagnostic system of loader, which substantially decreases information gathering requirement and lowers the overall cost with no loss of accuracy.
文摘We studied the electronic structure of the two new transition-metal carbodiimides CoNCN and NiNCN using first-principles method, which is based on density-functional theory (DFT). The density of states (DOS), the total energy of the cell and the spin magnetic moment of CoNCN and NiNCN were calculated. The calculations reveal that the compound CoNCN and NiNCN have hall-metallic properties in ferromagnetic ground state, and the spin magnetic moment per molecule is about 7.000 μB and 6.000 μB for CoNCN and NiNCN, respectively.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos.60908028 and 60971068
文摘Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed.
文摘The pseudopotential theory beyond second order with our well established single parametric model potential is employed to compute total crystal energy, static bulk modulus, energy band gap at the point X on the Jones-zone face and pressure-volume relation (equation of state under pressure) of Si, Ge and α-Sn using Nagy's static local field correction function. The results are compared with those obtained using few other local field correction functions. The present results of total energy are in good agreement with the experimental data. Bulk modulus calculated by Nagy's screening function is perfectly matching with the experimental results for Ge and α-Sn. Some deviation is found in the value of energy band gap.
基金This work was supported by the National Key Research & Development Program of China (No.2016YFA0200604), the National Natural Science Foundation of China (No.21273210), the Ministry of Science and Technology of China (No.2017YFA0204904), the Fundamen- tal Research Funds for the Central Universities (No.WK2340000074). We used computational re- sources of Super-computing Center of University of Science and Technology of China.
文摘We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamine Mn3C12N12H12 [ChemPhysChem 16, 614 (2015)] mono-layers. By coordinating chalcogen (S or O) atoms and -NH- group to Mn atoms with trans- or cis-structures and preserving space inversion symmetry, four configurations of this type of nanosheet are obtained: trans-manganese dithiolene-diamine Mn3(C6S3N3H3)2, cis- manganese dithiolene-diamine Mn3(C6S6)(C6N6H6), trans-manganese dihydroxyl-diamine Mn3(C6O3N3H3)2, and cis-manganese dihydroxyl-diamine Mn3(C6O6)(C6N6H6). The ge- ometric con guration, electronic structure and magnetic properties of these metal-organic nanosheets are systematically explored by density functional theory calculations. The cal- culated results show that Mn3(C6S3N3H3)2, Mn3(C6O3N3H3)2 and Mn3(C6O6)(C6N6H6) monolayers exhibit half-metallicity and display strong ferromagnetism with Curie transition temperatures near and even beyond room temperature, and Mn3(C6S6)(C6N6H6) monolayer is a semiconductor with small energy gap and spin frustration ground state. The mechanisms for the above properties, especially in uences of diflerent groups (atoms) substitution and coordination style on the magnetism of the nanosheet, are also discussed. The predicted two-dimensional metal-organic nanosheets have great promise for the future spintronics ap-plications.
基金Project(50575143)supported by the National Natural Science Foundation of ChinaProject(20040248005)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.
基金The project partly supported by the State 0utstanding Youth Foundation under Grant No. 70225005, National Natural Science Foundation of China under Grant Nos. 70501005, 70501004, and 70471088, the Natural Science Foundation of Beijing under Grant No. 9042006, the Special Program for Preliminary Research of Momentous Fundamental Research under Grant No. 2005CCA03900, the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University under Grant No. 48006
文摘In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.
文摘Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH3BH3 ) and metal amidoboranes (MAB, MNH2BH3), formed by substituting H atom in AB with one of main group metal atoms, have been investigated by density-functional theory and optimized at the B3LYP levels with 6-311G++ (3dr, 3pd) basic set. Their structural parameters and infrared spectrum characteristic peaks have been predicted, which should be the criterion of a successfully synthesized material. Several parameters such as binding energies, vibrational frequencies, and the energy gaps between the HOMO and the LUMO have been adopted to characterize and evaluate their structure stabilities. It is also found that the binding energies and HOMO-LUMO energy gaps of the MAB obviously change with the substitution of the atoms. MgAB has the lowest binding energy and is easier to decompose than any other substitutional structures under same conditions, while CaAB has the highest chemical activity.
基金supported by the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No.KJCX3-SYW-N2
文摘The relativistic mean-field (RMF) theory is used to calculate the properties of A =7-9 drip-line nuclei ^7Li, ^7;9Be, ^8;9B, and ^9C. Systematic deviations between experimental and theoretical binding energies are found. Possible reasons of these systematic deviations are discussed in terms of pairing energy. The root-mean-square (rms) radii of matter distributions for these nuclei agree with the experimental data quite well. The one-proton halo structure in ^8B is reproduced well, and the two-proton halo in ^9C is predicted. The calculations show that the RMF theory is valid in studying the properties of light drip-line nuclei.
文摘The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.
基金The Alabama Supercomputer Authority is gratefully acknowledged for a grant of computer time on the SGI Altix in Huntsville, AL. This work was supported by the National Science Foundation (NSF/HBCU-UP grant 0505872). SJ is supported by NSF/HBCU-UP as an undergraduate scholar. This work was also supported by the National Institutes of Health (NIHINCMHD 1P20MD000547-01) and the Petroleum Research Fund, administered by the American Chemical Society (PRF 43798-B6). AH is supported by the NIH as an undergraduate scholar in the Minority Access to Research Careers program (NIH/NIGMS 2T34GM008167-22A 1). The taxpayers of the state of Alabama in particular and the United States in general are gratefully acknowledged.
文摘Nitrogen molecules Nx have been the subject of much recent research because of their potential as high-energy materials. Many nitrogen molecules dissociate with very low barriers, including molecules such as acyclic N4 that are essentially unbound. A number of studies have reported the ability of heteroatoms to stabilize complex nitrogen molecules. In the present study, the energetic and electronic properties of scandium(Ⅰ) and titanium(Ⅱ) complexes with N2 and N4 are calculated and discussed. Dissociation energies and singlet-triplet energies are determined by theoretical calculations using second-order perturbation theory (MP2) in conjunction with the Dunning basis sets.
基金the 111 project(B12026)the National Natural Science Foundation of China(61904142)the Natural Science Basic Research Plan in Shaanxi Province of China(2019ZDLGY16-03)。
文摘This study used density functional theory and the quantum transport method to investigate the interfacial coupling and spin transport of transition metals(TMs)with a Fe,Co,and Ni/2H-VSe_(2)hybrid nanostructure.Because the indirect coupling of TM-Se-V led to an obvious reduction of the magnetic moment and the disappearance of the half-metal characteristics of 2H-VSe_(2),the expected spin-filtering effect of individual TMs and 2H-VSe_(2)deteriorated at the contact region.Nevertheless,all the TM/2H-VSe_(2)-based dual-probe devices exhibited an interesting bias-dependent spin-injection efficiency with a maximum output spin-polarized current of 666 mA mm-1 in Co/2H-VSe_(2).The proposed TM/2H-VSe_(2)-based spin-field-effect transistor demonstrated outstanding performance.The Ni/2H-VSe_(2)-based transistor achieved a maximum output spin-polarized current of 3117 m A mm-1 and demonstrated a good switching characteristic of 106 mV dec-1.Importantly,all transistors achieved a widely tunable scale of spin-extraction efficiency ranging consistently between 96%and-92%with gate bias.These results indicate a promising candidate for use in high-performance spintronic devices.
文摘The internal length scale(ILS)is a dominant parameter in strain gradient plasticity(SGP)theories,which helps to successfully explain the size effect of metals at the microscale.However,the ILS is usually introduced into strain gradient frameworks for dimensional consistency and is model-dependent.Even now,its physical meaning,connection with the microstructure of the material,and dependence on the strain level have not been thoroughly elucidated.In the current work,Aifantis'SGP model is reformulated by incorporating a recently proposed power-law relation for strain-dependent ILS.A further extension of Aifantis'SGP model by including the grain size effect is conducted according to the Hall-Petch formulation,and then the predictions are compared with torsion experiments of thin wires.It is revealed that the ILS depends on the sample size and grain size simultaneously;these dependencies are dominated by the dislocation spacing and can be well described through the strain hardenmg exponent.Furthermore,both the original and generalized Aifantis models provide larger estimated values for the ILS than Fleck-Hutchinson's theory.