In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fue...In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using a Lyapunov's stability analysis strategy.展开更多
Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In ...Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In this paper, a universal nonlinear stateobserver is presented for a class of universal chaotic systems to realize the chaotic synchronization, according to the theory of state-observer in the modern control theory. And theoretic analysis and simulation results have illustrated the validity of the approach. Moreover, the approach of synchronization proposed in this paper is very easy, flexible and universal with high synchronization precision.When the approach is applied to secure communication, the results are satisfying.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state obse...The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state observers to detect, localize and evaluate the crack conditions, seeking the model limitations through an experiment developed at the mechanical department of UNESP, llha Solteira, S^o Paulo-Brazil. Three different notch sizes were placed, one by one, at the top surface of a cantilever beam (to be considered as a crack at the mechanical system) and harmonic forces were applied at the tip of the beam with three different frequencies, for each notch size, to obtain experimental data to run the diagnosis algorithm. From the results it was possible to infer that the observation system performance increases with the raising of the crack size, which can be explained by the model, that gets more accurate with bigger crack sizes, however, when the propagation of the crack is considered at the model, the diagnosis of the crack presence tends to be more difficult. It was also possible to conclude that the developed algorithm works properly for systems which excitation frequencies are higher than 20 Hz and different from the natural frequencies of the system, due to influence of dynamic response of the crack at the model.展开更多
To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invari...To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invariance principle was used to realize static decoupling between the speed and tension of reversible cold strip mill. Then, considering the influence caused by the time variation of steel coil radius and rotational inertia of the left and right coilers, as well as the uncertainties, a CC strategy that is composed of extended state observer(ESO) and global sliding mode control(GSMC) with backstepping adaptive was proposed,which further realized dynamic decoupling and coordination control for the speed and tension system. Theoretical analysis shows that the resulting closed-loop system is global bounded stable. Finally, the simulation was carried out on the speed and tension system of a 1422 mm reversible cold strip mill by using the actual data, and through the comparison of the other control strategies, validity of the proposed CC strategy was shown by the results.展开更多
Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and ...Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and it can be done through tools that inform about the existence of faults, as well as, about their progress in time. A review of the modeling process used for rotor-support-structure shows that the finite element method is the maj or method employed. In this paper, with the aid of well defined theoretical models, obtained using the finite element technique, and the state observer method for the identification and location of faults, it is possible to monitor the parameters of a rotor-support-structure system, including the foundation effects. In order to improve safety, these parameters must be supervised in case of the occurrence of failures or faults. The state observers are designed using Linear Matrix Inequalities (LMIs). Finally, experimental results (using for this a rotation system in the mechanical vibrations laboratory at Ilha Solteira's Mechanical Engineering Department) demonstrate the effectiveness of the methodology developed.展开更多
We obtain uncertainty and certainty relations of state-independent form for the three Paufi observables with use of the Renyi entropies of order α∈ (0; 1]. It is shown that these entropic bounds are tight in the s...We obtain uncertainty and certainty relations of state-independent form for the three Paufi observables with use of the Renyi entropies of order α∈ (0; 1]. It is shown that these entropic bounds are tight in the sense that they are always reached with certain pure states. A new result is the condition for equality in Renyi-entropy uncertainty relations for the Pauli observables. Upper entropic bounds in the pure-state case are also novel. Combining the presented bounds leads to a band, in which the rescaled average Renyi a-entropy ranges for a pure measured state. A width of this band is compared with the Tsallis formulation derived previously.展开更多
The author establishes the exact boundary observability of unsteady supercritical flows in a tree-like network of open canals with general topology. An implicit duality between the exact boundary controllability and t...The author establishes the exact boundary observability of unsteady supercritical flows in a tree-like network of open canals with general topology. An implicit duality between the exact boundary controllability and the exact boundary observability is also given for unsteady supercritical flows.展开更多
文摘In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using a Lyapunov's stability analysis strategy.
文摘Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In this paper, a universal nonlinear stateobserver is presented for a class of universal chaotic systems to realize the chaotic synchronization, according to the theory of state-observer in the modern control theory. And theoretic analysis and simulation results have illustrated the validity of the approach. Moreover, the approach of synchronization proposed in this paper is very easy, flexible and universal with high synchronization precision.When the approach is applied to secure communication, the results are satisfying.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
文摘The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state observers to detect, localize and evaluate the crack conditions, seeking the model limitations through an experiment developed at the mechanical department of UNESP, llha Solteira, S^o Paulo-Brazil. Three different notch sizes were placed, one by one, at the top surface of a cantilever beam (to be considered as a crack at the mechanical system) and harmonic forces were applied at the tip of the beam with three different frequencies, for each notch size, to obtain experimental data to run the diagnosis algorithm. From the results it was possible to infer that the observation system performance increases with the raising of the crack size, which can be explained by the model, that gets more accurate with bigger crack sizes, however, when the propagation of the crack is considered at the model, the diagnosis of the crack presence tends to be more difficult. It was also possible to conclude that the developed algorithm works properly for systems which excitation frequencies are higher than 20 Hz and different from the natural frequencies of the system, due to influence of dynamic response of the crack at the model.
基金Project(61074099)supported by the National Natural Science Foundation of ChinaProject(LJRC013)supported by Cultivation Program for Leading Talent of Innovation Team in Colleges and Universities of Hebei Province,ChinaProject(B705)supported by Doctor Foundation of Yanshan University,China
文摘To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invariance principle was used to realize static decoupling between the speed and tension of reversible cold strip mill. Then, considering the influence caused by the time variation of steel coil radius and rotational inertia of the left and right coilers, as well as the uncertainties, a CC strategy that is composed of extended state observer(ESO) and global sliding mode control(GSMC) with backstepping adaptive was proposed,which further realized dynamic decoupling and coordination control for the speed and tension system. Theoretical analysis shows that the resulting closed-loop system is global bounded stable. Finally, the simulation was carried out on the speed and tension system of a 1422 mm reversible cold strip mill by using the actual data, and through the comparison of the other control strategies, validity of the proposed CC strategy was shown by the results.
文摘Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and it can be done through tools that inform about the existence of faults, as well as, about their progress in time. A review of the modeling process used for rotor-support-structure shows that the finite element method is the maj or method employed. In this paper, with the aid of well defined theoretical models, obtained using the finite element technique, and the state observer method for the identification and location of faults, it is possible to monitor the parameters of a rotor-support-structure system, including the foundation effects. In order to improve safety, these parameters must be supervised in case of the occurrence of failures or faults. The state observers are designed using Linear Matrix Inequalities (LMIs). Finally, experimental results (using for this a rotation system in the mechanical vibrations laboratory at Ilha Solteira's Mechanical Engineering Department) demonstrate the effectiveness of the methodology developed.
文摘We obtain uncertainty and certainty relations of state-independent form for the three Paufi observables with use of the Renyi entropies of order α∈ (0; 1]. It is shown that these entropic bounds are tight in the sense that they are always reached with certain pure states. A new result is the condition for equality in Renyi-entropy uncertainty relations for the Pauli observables. Upper entropic bounds in the pure-state case are also novel. Combining the presented bounds leads to a band, in which the rescaled average Renyi a-entropy ranges for a pure measured state. A width of this band is compared with the Tsallis formulation derived previously.
文摘The author establishes the exact boundary observability of unsteady supercritical flows in a tree-like network of open canals with general topology. An implicit duality between the exact boundary controllability and the exact boundary observability is also given for unsteady supercritical flows.