Understanding how population sizes vary over time is a key aspect of ecological research. Unfortunately, our under- standing of population dynamics has historically been based on an assumption that individuals are ide...Understanding how population sizes vary over time is a key aspect of ecological research. Unfortunately, our under- standing of population dynamics has historically been based on an assumption that individuals are identical with homogenous life-history properties. This assumption is certainly false for most natural systems, raising the question of what role individual variation plays in the dynamics of populations. While there has been an increase of interest regarding the effects of within popula- tion variation on the dynamics of single populations, there has been little study of the effects of differences in within population variation on patterns observed across populations. We found that life-history differences (clutch size) among individuals ex- plained the majority of the variation observed in the degree to which population sizes of eastern fence lizards Sceloporus undula- tus fluctuated. This finding suggests that differences across populations cannot be understood without an examination of differences at the level of a system rather than at the level of the individual展开更多
The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues formi...The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetyiases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In par- ticular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phos- phoryiation and intraceUular signaling upon proLonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetyiation is a critical mechanism that directLy affects VEGFR2 function.展开更多
文摘Understanding how population sizes vary over time is a key aspect of ecological research. Unfortunately, our under- standing of population dynamics has historically been based on an assumption that individuals are identical with homogenous life-history properties. This assumption is certainly false for most natural systems, raising the question of what role individual variation plays in the dynamics of populations. While there has been an increase of interest regarding the effects of within popula- tion variation on the dynamics of single populations, there has been little study of the effects of differences in within population variation on patterns observed across populations. We found that life-history differences (clutch size) among individuals ex- plained the majority of the variation observed in the degree to which population sizes of eastern fence lizards Sceloporus undula- tus fluctuated. This finding suggests that differences across populations cannot be understood without an examination of differences at the level of a system rather than at the level of the individual
文摘The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetyiases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In par- ticular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phos- phoryiation and intraceUular signaling upon proLonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetyiation is a critical mechanism that directLy affects VEGFR2 function.