In order to reflect the influence of the drivers' characteristic differences on intersection capacity under a mixed traffic flow, a driver correction coefficient for the intersection capacity calculation according to...In order to reflect the influence of the drivers' characteristic differences on intersection capacity under a mixed traffic flow, a driver correction coefficient for the intersection capacity calculation according to the driver's visual characteristics is proposed. First, the parameters of the driver's visual characteristics at some real roads, including gaze fixation distribution, mean fixation duration, visual angle distribution and some other parameters at intersections, are collected. Then, the relationship between the traffic flow rate at intersections and the parameters of driver eye movements are established. The analytical results indicate that when the traffic flow is unsaturated, the parameters of driver eye movements change relatively little; however, when the traffic flow is saturated, the parameters of driver eye movements change drastically. Finally, the saturation-flow-rate model is modified according to the parameters of driver eye movements; thus, a capacity model of intersections considering the driver's visual characteristics is obtained.展开更多
Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used i...Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used in the non-woven fabric for bag filter, was intermingled with polyacrylonitrile-based ACF (PAN-ACF) in the weight ratio of 1∶1 in order to make the doped ACF with P84 (doped-ACF-P84). Then the doped-ACF-P84 fibers were modified by HNO3 solution. The structure and morphology of doped-ACF-P84 were characterized and compared with those of ACF and doped-ACF-P84 modified by HNO3solution. The results show that the modified doped-ACF-P84 fibers have almost the same pore structure and specific surface area comparing with the original one. However, contrasted with the original PAN-ACF, the doped-ACF-P84 fibers modified by HNO3 solution have more oxygen-containing groups used for mercury removal. In particular, they have more lactone and carboxyl groups.展开更多
基金The National Natural Science Foundation of China (No.50708019)Huo Yingdong Education Foundation(No.104010)Jiangsu Qing Lan Project
文摘In order to reflect the influence of the drivers' characteristic differences on intersection capacity under a mixed traffic flow, a driver correction coefficient for the intersection capacity calculation according to the driver's visual characteristics is proposed. First, the parameters of the driver's visual characteristics at some real roads, including gaze fixation distribution, mean fixation duration, visual angle distribution and some other parameters at intersections, are collected. Then, the relationship between the traffic flow rate at intersections and the parameters of driver eye movements are established. The analytical results indicate that when the traffic flow is unsaturated, the parameters of driver eye movements change relatively little; however, when the traffic flow is saturated, the parameters of driver eye movements change drastically. Finally, the saturation-flow-rate model is modified according to the parameters of driver eye movements; thus, a capacity model of intersections considering the driver's visual characteristics is obtained.
基金National High Technology Research and Development Program,China(No.2008AA05Z305)
文摘Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used in the non-woven fabric for bag filter, was intermingled with polyacrylonitrile-based ACF (PAN-ACF) in the weight ratio of 1∶1 in order to make the doped ACF with P84 (doped-ACF-P84). Then the doped-ACF-P84 fibers were modified by HNO3 solution. The structure and morphology of doped-ACF-P84 were characterized and compared with those of ACF and doped-ACF-P84 modified by HNO3solution. The results show that the modified doped-ACF-P84 fibers have almost the same pore structure and specific surface area comparing with the original one. However, contrasted with the original PAN-ACF, the doped-ACF-P84 fibers modified by HNO3 solution have more oxygen-containing groups used for mercury removal. In particular, they have more lactone and carboxyl groups.