Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,...Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.展开更多
The quenching sensitivity of AA7136 alloy was investigated by time−temperature−property(TTP)diagrams,and the heterogeneous precipitation behavior during isothermal holding was investigated using scanning electron micr...The quenching sensitivity of AA7136 alloy was investigated by time−temperature−property(TTP)diagrams,and the heterogeneous precipitation behavior during isothermal holding was investigated using scanning electron microscopy,scanning transmission electron microscopy and high resolution transmission electron microscopy.Based on 99.5%TTP diagram,the nose temperature is determined to be about 346℃ with the transformation time of about 0.245 s.The precipitation ofη(MgZn_(2)),T(Al_(2)Zn_(3)Mg_(3)),S(Al_(2)CuMg)or Cu−Zn-rich Y phases can be found depending on isothermal holding temperature and time,and it is described in a time−temperature−precipitation diagram.The size and area fraction of isothermal holding induced phase particles increase,which results in the decrease of hardness of samples after aging.The quantitative contribution to loss of hardness by grain boundaries/subgrain boundaries and dispersoids in the matrix is discussed based on the amount of heterogeneous precipitation related to them.展开更多
This paper describes an effective methodology for evaluation of the suspension parameters intended to be used for a terrain vehicle. The objective of this approach is to make quick analyses of the sensitivity of the v...This paper describes an effective methodology for evaluation of the suspension parameters intended to be used for a terrain vehicle. The objective of this approach is to make quick analyses of the sensitivity of the vehicle suspension parameters. For the purpose of developing such a methodology, a mathematical modeling of a quarter vehicles suspension system is developed. Sensitive analysis of the suspension parameters is performed by employing the standard deviation of the vehicle body acceleration, dynamic tire load, and suspension travel. Sensitivity analysis results have shown that the spring stiffness, damping coefficient, tire stiffness and sprung mass have substantial influence on the ride comfort and road holding, while un-sprung mass on the other side has much lower impact in performance of the vehicle suspension system.展开更多
The RTQ-C (Technical Requirements of Quality for the Energy Performance Level of Commercial Buildings) publication classified the buildings in five efficiency levels. In RTQ-C, the evaluation can be done with two me...The RTQ-C (Technical Requirements of Quality for the Energy Performance Level of Commercial Buildings) publication classified the buildings in five efficiency levels. In RTQ-C, the evaluation can be done with two methods: a prescriptive method and a simulation one. This paper aims to identify the sensibility of the prescriptive method RTQ-C regarding the variation of equipment internal load density in office buildings in bioclimatic Zones I and 7 of the Brazilian bioclimatic zoning. The research results show that the building with walls and roof configured to meet specific prerequisites for energy efficiency Levels B and C had a lower consumption than buildings that meet the prerequisites to Level A. The study also showed that buildings with high internal load density of equipment, maximum shape factor and high, with walls and roofs with higher thermal transmittance, have lower power consumption than constructions with an envelope with greater thermal resistance. The increase in internal load density causes an increase in the internal heat generated by the large amount of equipment. In buildings with higher thermal insulation (Level A), the internal heat is maintained in the environment, causing overheating and the need for an air conditioning system.展开更多
The water-cooled supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray gun was developed to make a coating of temperature-sensitive material,such as titanium,on a substrate.The gun has a combustion chamber ...The water-cooled supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray gun was developed to make a coating of temperature-sensitive material,such as titanium,on a substrate.The gun has a combustion chamber (CC) followed by a mixing chamber (MC),in which the combustion gas is mixed with the nitrogen gas at room temperature.The mixed gas is accelerated to supersonic speed through a converging-diverging (C-D) nozzle followed by a straight passage called the barrel.This paper proposes an experimental procedure to estimate the cooling rate of CC,MC and barrel separately.Then,the mathematical model is presented to predict the pressure and temperature in the MC for the specific mass flow rates of fuel,oxygen and nitrogen by assuming chemical equilibrium with water-cooling in the CC and MC,and frozen flow with constant specific heat from stagnant condition to the throat in the CC and MC.Finally,the present mathematical model was validated by comparing the calculated and measured stagnant pressures of the CC of the two-stage HVOF gun.展开更多
Various nanostructures of the organic semiconductor (OSC)films have been reported to enhance the organic field-effect transistors (OFETs)sensing performance. However,complicated fabrication processes hinder their ap- ...Various nanostructures of the organic semiconductor (OSC)films have been reported to enhance the organic field-effect transistors (OFETs)sensing performance. However,complicated fabrication processes hinder their ap- plications.In this work,we have effectively enhanced the sensitivity of the OFET-based sensors only by adjusting substrate temperature in OSC preparation and surface treatment of the dielectric layer.The relative sensitivity of the device can be enhanced by 5 times.The flexible sensors with polymer dielectric also exhibit high sensitivity because the less smooth surface of the polymer provides the OSCs with smaller grain size.Therefore,this work reveals the trade-off effects of the OSCs grain size on both transistor characteristic and chemic.al sensing performance,and provides a simple and extensively applicable strategy for OFETs sensitivity improvement.展开更多
This article describes in detail a technique for model!ng cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying stress across the sensor, which then induces a force on mechanica...This article describes in detail a technique for model!ng cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying stress across the sensor, which then induces a force on mechanical eigenmodes of the system. The force on each oscillator can then be determined from an overlap integral between magnetostrictive stress and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected. Furthermore, an optomechanical magnetic field sensor is compared to other magnetic field sensors in terms of sensitivity and potential for miniaturization. It is shown that an optomechanical sensor can potentially outperform state-of-the-art magnetometers of similar size, in particular other sensors based on a magnetostrictive mechanism.展开更多
基金Projects(11272267,11102168,10932008)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by Northwestern Polytechnical University
文摘Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.
基金financial supports from the National Key Research and Development Program of China (No. 2016YFB0300901)the Scientific Research Project of Inner Mongolia Colleges and Universities, China (No. NJZY21092)。
文摘The quenching sensitivity of AA7136 alloy was investigated by time−temperature−property(TTP)diagrams,and the heterogeneous precipitation behavior during isothermal holding was investigated using scanning electron microscopy,scanning transmission electron microscopy and high resolution transmission electron microscopy.Based on 99.5%TTP diagram,the nose temperature is determined to be about 346℃ with the transformation time of about 0.245 s.The precipitation ofη(MgZn_(2)),T(Al_(2)Zn_(3)Mg_(3)),S(Al_(2)CuMg)or Cu−Zn-rich Y phases can be found depending on isothermal holding temperature and time,and it is described in a time−temperature−precipitation diagram.The size and area fraction of isothermal holding induced phase particles increase,which results in the decrease of hardness of samples after aging.The quantitative contribution to loss of hardness by grain boundaries/subgrain boundaries and dispersoids in the matrix is discussed based on the amount of heterogeneous precipitation related to them.
文摘This paper describes an effective methodology for evaluation of the suspension parameters intended to be used for a terrain vehicle. The objective of this approach is to make quick analyses of the sensitivity of the vehicle suspension parameters. For the purpose of developing such a methodology, a mathematical modeling of a quarter vehicles suspension system is developed. Sensitive analysis of the suspension parameters is performed by employing the standard deviation of the vehicle body acceleration, dynamic tire load, and suspension travel. Sensitivity analysis results have shown that the spring stiffness, damping coefficient, tire stiffness and sprung mass have substantial influence on the ride comfort and road holding, while un-sprung mass on the other side has much lower impact in performance of the vehicle suspension system.
文摘The RTQ-C (Technical Requirements of Quality for the Energy Performance Level of Commercial Buildings) publication classified the buildings in five efficiency levels. In RTQ-C, the evaluation can be done with two methods: a prescriptive method and a simulation one. This paper aims to identify the sensibility of the prescriptive method RTQ-C regarding the variation of equipment internal load density in office buildings in bioclimatic Zones I and 7 of the Brazilian bioclimatic zoning. The research results show that the building with walls and roof configured to meet specific prerequisites for energy efficiency Levels B and C had a lower consumption than buildings that meet the prerequisites to Level A. The study also showed that buildings with high internal load density of equipment, maximum shape factor and high, with walls and roofs with higher thermal transmittance, have lower power consumption than constructions with an envelope with greater thermal resistance. The increase in internal load density causes an increase in the internal heat generated by the large amount of equipment. In buildings with higher thermal insulation (Level A), the internal heat is maintained in the environment, causing overheating and the need for an air conditioning system.
文摘The water-cooled supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray gun was developed to make a coating of temperature-sensitive material,such as titanium,on a substrate.The gun has a combustion chamber (CC) followed by a mixing chamber (MC),in which the combustion gas is mixed with the nitrogen gas at room temperature.The mixed gas is accelerated to supersonic speed through a converging-diverging (C-D) nozzle followed by a straight passage called the barrel.This paper proposes an experimental procedure to estimate the cooling rate of CC,MC and barrel separately.Then,the mathematical model is presented to predict the pressure and temperature in the MC for the specific mass flow rates of fuel,oxygen and nitrogen by assuming chemical equilibrium with water-cooling in the CC and MC,and frozen flow with constant specific heat from stagnant condition to the throat in the CC and MC.Finally,the present mathematical model was validated by comparing the calculated and measured stagnant pressures of the CC of the two-stage HVOF gun.
基金supported by the National Natural Science Foundation of China (51603151 and 51741302)the National Key Research and Development Program of China (2017YFA0103900 & 2017YFA0103904)+1 种基金 Science & Technology Foundation of Shanghai (17JC1404600) the Fundamental Research Funds for the Central Universities.
文摘Various nanostructures of the organic semiconductor (OSC)films have been reported to enhance the organic field-effect transistors (OFETs)sensing performance. However,complicated fabrication processes hinder their ap- plications.In this work,we have effectively enhanced the sensitivity of the OFET-based sensors only by adjusting substrate temperature in OSC preparation and surface treatment of the dielectric layer.The relative sensitivity of the device can be enhanced by 5 times.The flexible sensors with polymer dielectric also exhibit high sensitivity because the less smooth surface of the polymer provides the OSCs with smaller grain size.Therefore,this work reveals the trade-off effects of the OSCs grain size on both transistor characteristic and chemic.al sensing performance,and provides a simple and extensively applicable strategy for OFETs sensitivity improvement.
文摘This article describes in detail a technique for model!ng cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying stress across the sensor, which then induces a force on mechanical eigenmodes of the system. The force on each oscillator can then be determined from an overlap integral between magnetostrictive stress and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected. Furthermore, an optomechanical magnetic field sensor is compared to other magnetic field sensors in terms of sensitivity and potential for miniaturization. It is shown that an optomechanical sensor can potentially outperform state-of-the-art magnetometers of similar size, in particular other sensors based on a magnetostrictive mechanism.