Fuzziness, as intrinsic property of natural language, appears to be an extremely pervasive phenomenon in language communication with no exception of news reporting. To some extent, the usage of a great number of fuzzy...Fuzziness, as intrinsic property of natural language, appears to be an extremely pervasive phenomenon in language communication with no exception of news reporting. To some extent, the usage of a great number of fuzzy expressions in news reporting reflects the property of reporter as functional entity. On different occasions, reporters, when reporting news, may play such three kinds of roles as the first information source, the second information source or the virtual interpreter. The different roles-playing determines the pragmatic intention of fuzzy language in news reporting.展开更多
An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is ...An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.展开更多
Prediction of roadheader performance plays a significant role in the plan of tunnel construction, which is influenced by different key parameters, including rock strength, discontinuity in rock mass, type and specific...Prediction of roadheader performance plays a significant role in the plan of tunnel construction, which is influenced by different key parameters, including rock strength, discontinuity in rock mass, type and specifications of roadheader machine, and brittleness. The main aim of this study is to build a robust empirical equation based on rock mass properties for the roadheader performance prediction. For achieving the aim, a dataset composed of roadheader performance rate and rock properties is established using the dataset compiled from an underground coal mine located in a remote rugged desert environment some 85 km south of Tabas City in mid east Iran. By using gathered data, the statistical analyses are conducted between rock mass properties and roadheader performance to find whether there is a significant relationship between input variables and roadheader performance. The results show that rock mass properties have a considerable impact on the rate of the roadheader performance. It is demonstrated that the proposed model can accurately predict the roadheader performance as a function of rock mass properties.展开更多
The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, construct...The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.展开更多
Thanks to the progress in semiconductor technologies, today microcontrollers offer huge computational power. That allows using advanced control algorithms with a built-in intelligence with a sufficient speed, for many...Thanks to the progress in semiconductor technologies, today microcontrollers offer huge computational power. That allows using advanced control algorithms with a built-in intelligence with a sufficient speed, for many demanding applications. These capabilities make the embedded control ideal for using at complex plants and for obtaining the highest performance in a wide area of operations. However, control performance also strongly depends on the feedback. A short latency and a high precision of embedded analog peripherals allow building fast and accurate control loops. The paper proposes an easy design method of high performance analog to digital converter filtering path, optimized for control applications.展开更多
For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital ...For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.展开更多
An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal a...An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid-fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model.展开更多
Gas production from multiple coal seams has become common practice in many coal basins around the world. Although gas production rates are typically enhanced, the economic viability of such practice is not well studie...Gas production from multiple coal seams has become common practice in many coal basins around the world. Although gas production rates are typically enhanced, the economic viability of such practice is not well studied. In order to investigate the technical and economic feasibility of multiple coal seams production, reservoir simulation integrated with economics modelling was performed to study the effect of important reservoir properties of the secondary coal seam on production and economic performance using both vertical and horizontal wells. The results demonstrated that multiple seam gas production of using both vertical and horizontal wells have competitive advantage over single layer production under most scenarios. Gas content and permeability of the secondary coal seam are the most important reservoir properties that have impact on the economic feasibility of multiple seam gas production. The comparison of vertical well and horizontal well performance showed that horizontal well is more economically attractive for both single well and gas field. Moreover, wellhead price is the most sensitive to the economic performance, followed by operating costs and government subsidy. Although the results of reservoir simulation combined with economic analysis are subject to assumptions, multiple seam gas production is more likely to maintain profitability compared with single layer production.展开更多
The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30...The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30 T to 0.40T(T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand(RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VSof 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the system with D/T = 0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model(PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.展开更多
Purpose: To assess the effects of trust in the coach on commitment to coach, willingness to cooperate, and perceived performance. Methods: Two hundred and fifteen members of competitive sports clubs responded to sca...Purpose: To assess the effects of trust in the coach on commitment to coach, willingness to cooperate, and perceived performance. Methods: Two hundred and fifteen members of competitive sports clubs responded to scales measuring coach characteristics of justice, benevolence, integrity, and competence; athlete's trust in the coach; commitment to coach; willingness to cooperate; and perceived performance. Results: Confirmatory factor analysis of data supported the measurement model. Perceptions of a coach's justice (β = 0.19, p 〈 0.05), benevolence (β = 0.32, p 〈 0.05), integrity (β= 0.14, p 〈 0.05), and competence (β = 0.29, p 〈 0.05) each had a significant effect on athletes' trust, and they cumulatively accounted for 61% of the variance in trust. The structural equation modeling showed that trust had direct effects on commitment to coach (β = 0.77, p 〈 0.01), willingness to cooperate (β= 0.79, p 〈 0.01 ), and perceived performance (β = 0.51, p 〈 0.01),. The hypothesized mediating effects of commitment to coach and willingness to cooperate were not supported. The model explained 26% of the variance in perceived performance. Conclusion: As trust in coach influences commitment to coach, willingness to cooperate, and perceived performance, coaches need to take effort to bolster their athletes' trust by being just and benevolent, and enhancing their integrity and competence.展开更多
文摘Fuzziness, as intrinsic property of natural language, appears to be an extremely pervasive phenomenon in language communication with no exception of news reporting. To some extent, the usage of a great number of fuzzy expressions in news reporting reflects the property of reporter as functional entity. On different occasions, reporters, when reporting news, may play such three kinds of roles as the first information source, the second information source or the virtual interpreter. The different roles-playing determines the pragmatic intention of fuzzy language in news reporting.
文摘An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.
文摘Prediction of roadheader performance plays a significant role in the plan of tunnel construction, which is influenced by different key parameters, including rock strength, discontinuity in rock mass, type and specifications of roadheader machine, and brittleness. The main aim of this study is to build a robust empirical equation based on rock mass properties for the roadheader performance prediction. For achieving the aim, a dataset composed of roadheader performance rate and rock properties is established using the dataset compiled from an underground coal mine located in a remote rugged desert environment some 85 km south of Tabas City in mid east Iran. By using gathered data, the statistical analyses are conducted between rock mass properties and roadheader performance to find whether there is a significant relationship between input variables and roadheader performance. The results show that rock mass properties have a considerable impact on the rate of the roadheader performance. It is demonstrated that the proposed model can accurately predict the roadheader performance as a function of rock mass properties.
基金Projects(2014AA052101-3,2014AA052102)supported by the National High Technology Research and Development Program of ChinaProjects(51205389,61105067)supported by the National Natural Science Foundation of China
文摘The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.
文摘Thanks to the progress in semiconductor technologies, today microcontrollers offer huge computational power. That allows using advanced control algorithms with a built-in intelligence with a sufficient speed, for many demanding applications. These capabilities make the embedded control ideal for using at complex plants and for obtaining the highest performance in a wide area of operations. However, control performance also strongly depends on the feedback. A short latency and a high precision of embedded analog peripherals allow building fast and accurate control loops. The paper proposes an easy design method of high performance analog to digital converter filtering path, optimized for control applications.
基金Projects(51309089,11202063)supported by the National Natural Science Foundation of ChinaProject(2013BAB06B01)supported by the National High Technology Research and Development Program of China+1 种基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProject(BK20130846)supported by Natural Science Foundation of Jiangsu Province,China
文摘For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.
文摘An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid-fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model.
文摘Gas production from multiple coal seams has become common practice in many coal basins around the world. Although gas production rates are typically enhanced, the economic viability of such practice is not well studied. In order to investigate the technical and economic feasibility of multiple coal seams production, reservoir simulation integrated with economics modelling was performed to study the effect of important reservoir properties of the secondary coal seam on production and economic performance using both vertical and horizontal wells. The results demonstrated that multiple seam gas production of using both vertical and horizontal wells have competitive advantage over single layer production under most scenarios. Gas content and permeability of the secondary coal seam are the most important reservoir properties that have impact on the economic feasibility of multiple seam gas production. The comparison of vertical well and horizontal well performance showed that horizontal well is more economically attractive for both single well and gas field. Moreover, wellhead price is the most sensitive to the economic performance, followed by operating costs and government subsidy. Although the results of reservoir simulation combined with economic analysis are subject to assumptions, multiple seam gas production is more likely to maintain profitability compared with single layer production.
基金Supported by the National Natural Science Foundation of China(21121064,21206002,21376016)
文摘The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30 T to 0.40T(T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand(RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VSof 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the system with D/T = 0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model(PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.
文摘Purpose: To assess the effects of trust in the coach on commitment to coach, willingness to cooperate, and perceived performance. Methods: Two hundred and fifteen members of competitive sports clubs responded to scales measuring coach characteristics of justice, benevolence, integrity, and competence; athlete's trust in the coach; commitment to coach; willingness to cooperate; and perceived performance. Results: Confirmatory factor analysis of data supported the measurement model. Perceptions of a coach's justice (β = 0.19, p 〈 0.05), benevolence (β = 0.32, p 〈 0.05), integrity (β= 0.14, p 〈 0.05), and competence (β = 0.29, p 〈 0.05) each had a significant effect on athletes' trust, and they cumulatively accounted for 61% of the variance in trust. The structural equation modeling showed that trust had direct effects on commitment to coach (β = 0.77, p 〈 0.01), willingness to cooperate (β= 0.79, p 〈 0.01 ), and perceived performance (β = 0.51, p 〈 0.01),. The hypothesized mediating effects of commitment to coach and willingness to cooperate were not supported. The model explained 26% of the variance in perceived performance. Conclusion: As trust in coach influences commitment to coach, willingness to cooperate, and perceived performance, coaches need to take effort to bolster their athletes' trust by being just and benevolent, and enhancing their integrity and competence.