The fact that outburst traffic in industrial Ethemet was focused on that would bring self-similar phenomenon leading to the delay increase of the cyclical data, and a hybrid priority queue schedule model was proposed ...The fact that outburst traffic in industrial Ethemet was focused on that would bring self-similar phenomenon leading to the delay increase of the cyclical data, and a hybrid priority queue schedule model was proposed in which the outburst data was given the highest priority. Some properties of the self-similar outburst data were proved by network calculus, and its service curve scheduled by the switch was gained. And then the performance of the scheduling algorithm was obtained. The simulation results are close to those calculated by using network calculus model. Some results are of actual significance to the construction of switched industrial Ethernet.展开更多
Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and d...Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem.展开更多
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat...Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing.展开更多
基金Project( 60425310) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject(05JJ40118) supported by the Natural Science Foundation of Hunan Province, China
文摘The fact that outburst traffic in industrial Ethemet was focused on that would bring self-similar phenomenon leading to the delay increase of the cyclical data, and a hybrid priority queue schedule model was proposed in which the outburst data was given the highest priority. Some properties of the self-similar outburst data were proved by network calculus, and its service curve scheduled by the switch was gained. And then the performance of the scheduling algorithm was obtained. The simulation results are close to those calculated by using network calculus model. Some results are of actual significance to the construction of switched industrial Ethernet.
基金Project(2010-0020163) supported by Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea
文摘Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem.
基金Supported by the National Natural Science Foundation of China(No.61300078)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD201504039)+1 种基金Funding Project for Academic Human Resources Development in Beijing Union University(No.BPHR2014A03,Rk100201510)"New Start"Academic Research Projects of Beijing Union University(No.Hzk10201501)
文摘Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing.