AIM: To investigate the inhibitory effect of natural taurine (NTau) on portal hypertension (PHT) in rats with experimentally-induced liver cirrhosis (LC). METHODS: Experimentally-induced LC Wistar rats (20 ra...AIM: To investigate the inhibitory effect of natural taurine (NTau) on portal hypertension (PHT) in rats with experimentally-induced liver cirrhosis (LC). METHODS: Experimentally-induced LC Wistar rats (20 rats/group) were treated with either oral saline or oral NTau for 6 consecutive weeks. Evaluation parameters included portal venous pressure (PVP), portal venous resistance (PVR), portal venous flow (PVF), splanchnic vascular resistance (SVR) and mean arterial pressure (NAP). Vasoactive substance levels including nitric oxide (NO), nitric oxide synthase (NOS) and cyclic guanosine monophosphate (cGMP) were also measured. Histological investigation of type Ⅰ and Ⅲ collagen (COL Ⅰ and Ⅲ) and transforming growth factor-β1 (TGF-β1) was also performed. RESULTS: Treatment with NTau (1) significantly decreased PVP, PVR and PVF, and increased MAP and SVP; (2) markedly increased the vascular compliance and reduced the zero-stress of the portal vein; (3) markedly decreased the amount of NO and cGMP and activity of NOS; and (4) improved the pathological status of the liver tissue and reduced the expression of COL Ⅰ, COL Ⅲ and TGF-β1. CONCLUSION: NTau inhibited the LC-induced PHT by improving hyperdynamic circulation, morphology of liver and biomechanical properties of the portal vein in experimentally-induced LC rats.展开更多
Based on a series of aqua-planet and air–sea coupled experiments,the influence of unrealistic treatment of water substance in the Flexible Global Ocean–Atmosphere–Land System Model,spectral version 2(FGOALS-s2),o...Based on a series of aqua-planet and air–sea coupled experiments,the influence of unrealistic treatment of water substance in the Flexible Global Ocean–Atmosphere–Land System Model,spectral version 2(FGOALS-s2),on the model's climate sensitivity is investigated in this paper.Because the model does not adopt an explicit microphysics scheme,the detrained water substance from the convection scheme is converted back to the humidity.This procedure could lead to an additional increase of water vapor in the atmosphere,which could strengthen the model's climate sensitivity.Further sensitivity experiments confirm this deduction.After removing the water vapor converted from the detrained water substance,the water vapor reduced significantly in the upper troposphere and the high clouds also reduced.Quantitative calculations show that the water vapor reduced almost 10% of the total water vapor,and 50% at 150 h Pa,when the detrained water substance was removed,contributing to the 30% atmospheric surface temperature increase.This study calls for an explicit microphysics scheme to be introduced into the model in order to handle the detrained water vapor and thus improve the model's simulation skill.展开更多
The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch ...The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke.展开更多
The photophysical and photochemical behaviors of thioxanthen-9-one(TX)in different solvents have been studied using nanosecond transient absorption spectroscopy.A unique absorption of the triplet state^(3)TX^(∗) is ob...The photophysical and photochemical behaviors of thioxanthen-9-one(TX)in different solvents have been studied using nanosecond transient absorption spectroscopy.A unique absorption of the triplet state^(3)TX^(∗) is observed,which involves two components,^(3)nπ^(∗) and^(3)ππ^(∗) states.The ^(3)ππ^(∗) component contributes more to the^(3)TX^(∗) when increasing the solvent polarity.The self-quenching rate constant ksq of^(3)TX^(∗)is decreased in the order of CH_(3)CN,CH_(3)CN/CH_(3)OH(1:1),and CH_(3)CN/H_(2)O(1:1),which might be caused by the exciplex formed from hydrogen bond interaction.In the presence of diphenylamine(DPA),the quenching of^(3)TX^(∗)happens efficiently via electron transfer,producing the TX^(⋅−) anion and DPA^(⋅+) cation radicals.Because of insignificant solvent effects on the electron transfer,the electron affinity of the ^(3)nπ^(∗) state is proved to be approximately equal to that of the ^(3)ππ^(∗) state.However,a solvent dependence is found in the dynamic decay of TX^(⋅−) anion radical.In the strongly acid aqueous acetonitrile(pH=3.0),a dynamic equilibrium between protonated and unprotonated TX is definitely observed.Once photolysis,^(3)TXH^(+∗) is produced,which contributes to the new band at 520 nm.展开更多
Properties of the triaxiai superdeformed (TSD) bands of Hf isotopes are investigated systematicaily within the supersymmetry scheme including many-body interactions and a perturbation possessing the SO(5) (or SU...Properties of the triaxiai superdeformed (TSD) bands of Hf isotopes are investigated systematicaily within the supersymmetry scheme including many-body interactions and a perturbation possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia, and the spin of the TSD bands in Hf isotopes are obtained. It shows that this approach is quite powerful in describing the properties of the triaxial superdeformation in Hf isotopes.展开更多
基金Supported by The National Natural Science Foundation of China,Grant,No.30660235Guangxi Science Foundation forYouths,Grant,No.0728080National"11th 5-year"Support Plan of China,Grant,No.2006BAI0802-07
文摘AIM: To investigate the inhibitory effect of natural taurine (NTau) on portal hypertension (PHT) in rats with experimentally-induced liver cirrhosis (LC). METHODS: Experimentally-induced LC Wistar rats (20 rats/group) were treated with either oral saline or oral NTau for 6 consecutive weeks. Evaluation parameters included portal venous pressure (PVP), portal venous resistance (PVR), portal venous flow (PVF), splanchnic vascular resistance (SVR) and mean arterial pressure (NAP). Vasoactive substance levels including nitric oxide (NO), nitric oxide synthase (NOS) and cyclic guanosine monophosphate (cGMP) were also measured. Histological investigation of type Ⅰ and Ⅲ collagen (COL Ⅰ and Ⅲ) and transforming growth factor-β1 (TGF-β1) was also performed. RESULTS: Treatment with NTau (1) significantly decreased PVP, PVR and PVF, and increased MAP and SVP; (2) markedly increased the vascular compliance and reduced the zero-stress of the portal vein; (3) markedly decreased the amount of NO and cGMP and activity of NOS; and (4) improved the pathological status of the liver tissue and reduced the expression of COL Ⅰ, COL Ⅲ and TGF-β1. CONCLUSION: NTau inhibited the LC-induced PHT by improving hyperdynamic circulation, morphology of liver and biomechanical properties of the portal vein in experimentally-induced LC rats.
基金jointly supported by the National Basic Research Program of China[grant number 2014CB953904]the National Natural Science Foundation of China[grant numbers 41405091 and 91337110]+1 种基金the Open Projects of the Key Laboratory of Meteorological Disaster of the Ministry of Education[grant number KLME1405]the Strategic Leading Science Projects of the Chinese Academy of Sciences[grant number XDA11010402]
文摘Based on a series of aqua-planet and air–sea coupled experiments,the influence of unrealistic treatment of water substance in the Flexible Global Ocean–Atmosphere–Land System Model,spectral version 2(FGOALS-s2),on the model's climate sensitivity is investigated in this paper.Because the model does not adopt an explicit microphysics scheme,the detrained water substance from the convection scheme is converted back to the humidity.This procedure could lead to an additional increase of water vapor in the atmosphere,which could strengthen the model's climate sensitivity.Further sensitivity experiments confirm this deduction.After removing the water vapor converted from the detrained water substance,the water vapor reduced significantly in the upper troposphere and the high clouds also reduced.Quantitative calculations show that the water vapor reduced almost 10% of the total water vapor,and 50% at 150 h Pa,when the detrained water substance was removed,contributing to the 30% atmospheric surface temperature increase.This study calls for an explicit microphysics scheme to be introduced into the model in order to handle the detrained water vapor and thus improve the model's simulation skill.
文摘The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke.
基金supported by the Educational Commission of Anhui Province of China (No.KJ2018A0491)financial support of Anhui Natural Science Foundation (No.1908085MB50)
文摘The photophysical and photochemical behaviors of thioxanthen-9-one(TX)in different solvents have been studied using nanosecond transient absorption spectroscopy.A unique absorption of the triplet state^(3)TX^(∗) is observed,which involves two components,^(3)nπ^(∗) and^(3)ππ^(∗) states.The ^(3)ππ^(∗) component contributes more to the^(3)TX^(∗) when increasing the solvent polarity.The self-quenching rate constant ksq of^(3)TX^(∗)is decreased in the order of CH_(3)CN,CH_(3)CN/CH_(3)OH(1:1),and CH_(3)CN/H_(2)O(1:1),which might be caused by the exciplex formed from hydrogen bond interaction.In the presence of diphenylamine(DPA),the quenching of^(3)TX^(∗)happens efficiently via electron transfer,producing the TX^(⋅−) anion and DPA^(⋅+) cation radicals.Because of insignificant solvent effects on the electron transfer,the electron affinity of the ^(3)nπ^(∗) state is proved to be approximately equal to that of the ^(3)ππ^(∗) state.However,a solvent dependence is found in the dynamic decay of TX^(⋅−) anion radical.In the strongly acid aqueous acetonitrile(pH=3.0),a dynamic equilibrium between protonated and unprotonated TX is definitely observed.Once photolysis,^(3)TXH^(+∗) is produced,which contributes to the new band at 520 nm.
基金supported by National Natural Science Foundation of China under Grant No. 10475026the Natural Science Foundation of Zhejiang Province under Grant No. KY607518
文摘Properties of the triaxiai superdeformed (TSD) bands of Hf isotopes are investigated systematicaily within the supersymmetry scheme including many-body interactions and a perturbation possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia, and the spin of the TSD bands in Hf isotopes are obtained. It shows that this approach is quite powerful in describing the properties of the triaxial superdeformation in Hf isotopes.