Understanding the cause of the synchronization of population evolution is an important issue for ecologicalimprovement.Here we present a Lotka-Volterra-type model driven by two correlated environmental noises and show...Understanding the cause of the synchronization of population evolution is an important issue for ecologicalimprovement.Here we present a Lotka-Volterra-type model driven by two correlated environmental noises and show,via theoretical analysis and direct simulation,that noise correlation can induce a synchronization of the mutualists.Thetime series of mutual species exhibit a chaotic-like fluctuation,which is independent of the noise correlation,however,the chaotic fluctuation of mutual species ratio decreases with the noise correlation.A quantitative parameter defined forcharacterizing chaotic fluctuation provides a good approach to measure when the complete synchronization happens.展开更多
Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum o...Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum of some user-defined objective functions under constrains. An example of the approach application for a surface combatant hull optimization is demonstrated. In the procedure, the Particle Swarm Optimization (PSO) algorithm is adopted for exploring the design space, and the Bezier patch method is chosen to automatically modify the geometry of bulb. The total resistance is assessed by RANS solvers. It's shown that the total resistance coefficient of the optimized design is reduced by about 6.6% comparing with the original design. The given combatant design optimization example demonstrates the practicability and superiority of the proposed approach for low carbon shipping.展开更多
Abstract: This paper presents a coupled multi-body and FEM (finite element method)-BEM (boundary element method) methodology used to carry out a comprehensive NVH (noise, vibration and harshness) investigation ...Abstract: This paper presents a coupled multi-body and FEM (finite element method)-BEM (boundary element method) methodology used to carry out a comprehensive NVH (noise, vibration and harshness) investigation of a four-cylinder internal combustion engine prototype. Firstly, a MBDS (multi-body dynamic simulation) of the internal combustion engine has been carried out, at a defined operating condition, in order to determine the excitation force of the powertrain exciting the cylinder block. In this way, the dynamics of the engine powertrain have been described taking into account both the effects of the gas forces of the combustion process and the inertia forces of the moving parts. Afterwards, the cylinder block excitation forces have been used to evaluate the engine block vibrations and to predict the external noise radiated with both the well-known ATV (acoustic transfer vectors) and MATV (modal acoustic transfer vectors) methodologies at a distance of 1 m from the engine, according to the standard ISO 3744. The dynamics of the engine powertrain and its vibro-acoustic behaviour have been described using LMS (learning management system) Engineering Innovation Virtual.Lab tools.展开更多
基金National Natural Science Foundation of China under Grant No.60471023
文摘Understanding the cause of the synchronization of population evolution is an important issue for ecologicalimprovement.Here we present a Lotka-Volterra-type model driven by two correlated environmental noises and show,via theoretical analysis and direct simulation,that noise correlation can induce a synchronization of the mutualists.Thetime series of mutual species exhibit a chaotic-like fluctuation,which is independent of the noise correlation,however,the chaotic fluctuation of mutual species ratio decreases with the noise correlation.A quantitative parameter defined forcharacterizing chaotic fluctuation provides a good approach to measure when the complete synchronization happens.
文摘Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum of some user-defined objective functions under constrains. An example of the approach application for a surface combatant hull optimization is demonstrated. In the procedure, the Particle Swarm Optimization (PSO) algorithm is adopted for exploring the design space, and the Bezier patch method is chosen to automatically modify the geometry of bulb. The total resistance is assessed by RANS solvers. It's shown that the total resistance coefficient of the optimized design is reduced by about 6.6% comparing with the original design. The given combatant design optimization example demonstrates the practicability and superiority of the proposed approach for low carbon shipping.
文摘Abstract: This paper presents a coupled multi-body and FEM (finite element method)-BEM (boundary element method) methodology used to carry out a comprehensive NVH (noise, vibration and harshness) investigation of a four-cylinder internal combustion engine prototype. Firstly, a MBDS (multi-body dynamic simulation) of the internal combustion engine has been carried out, at a defined operating condition, in order to determine the excitation force of the powertrain exciting the cylinder block. In this way, the dynamics of the engine powertrain have been described taking into account both the effects of the gas forces of the combustion process and the inertia forces of the moving parts. Afterwards, the cylinder block excitation forces have been used to evaluate the engine block vibrations and to predict the external noise radiated with both the well-known ATV (acoustic transfer vectors) and MATV (modal acoustic transfer vectors) methodologies at a distance of 1 m from the engine, according to the standard ISO 3744. The dynamics of the engine powertrain and its vibro-acoustic behaviour have been described using LMS (learning management system) Engineering Innovation Virtual.Lab tools.