期刊文献+
共找到269篇文章
< 1 2 14 >
每页显示 20 50 100
经验模式分解模糊特征提取的支持向量机混合诊断模型 被引量:7
1
作者 胡桥 何正嘉 +1 位作者 张周锁 訾艳阳 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第3期290-294,共5页
为解决机械故障小样本模式识别问题,有效地提高分类的准确率,提出了一种基于经验模式分解模糊特征提取的支持向量机混合诊断模型.该模型通过对信号进行经验模式分解,提取信号的本征模式分量并转化为模糊特征向量,对机器故障进行诊断,然... 为解决机械故障小样本模式识别问题,有效地提高分类的准确率,提出了一种基于经验模式分解模糊特征提取的支持向量机混合诊断模型.该模型通过对信号进行经验模式分解,提取信号的本征模式分量并转化为模糊特征向量,对机器故障进行诊断,然后将模糊特征向量输入到多分类的支持向量机中,实现了对机器不同故障类型的识别.将该模型应用于汽轮发电机组的 3 种工作状态的识别中,测试结果表明,同原有的未经过任何特征提取以及经过小波包模糊特征提取的 2 种多分类支持向量机方法相比,该模型将分类准确率从原有的53 33%和86 67%提高到100%,有效地改善了分类的准确性.同时,该模型还为汽轮发电机组的故障确诊提供了有力依据. 展开更多
关键词 经验模式分解 支持向量机 模糊特征提取 混合诊断
下载PDF
基于改进奇异值分解和经验模式分解的滚动轴承早期微弱故障特征提取 被引量:7
2
作者 孟宗 谷伟明 +1 位作者 胡猛 熊景鸣 《计量学报》 CSCD 北大核心 2016年第4期406-410,共5页
针对滚动轴承早期微弱故障特征难以提取的问题,提出了改进奇异值分解(SVD)和经验模式分解(EMD)的滚动轴承早期微弱故障特征提取方法。首先用多分辨奇异值分解将信号分成具有不同分辨率的近似和细节信号,然后对近似信号用奇异值差分... 针对滚动轴承早期微弱故障特征难以提取的问题,提出了改进奇异值分解(SVD)和经验模式分解(EMD)的滚动轴承早期微弱故障特征提取方法。首先用多分辨奇异值分解将信号分成具有不同分辨率的近似和细节信号,然后对近似信号用奇异值差分谱进行消噪,对消噪后的信号进行经验模态分解,将得到的各本征模函数分量进行希尔伯特包络解调,从而获得滚动轴承故障特征信息,最后通过对滚动轴承早期内圈故障的诊断实验证明了该方法的有效性。 展开更多
关键词 计量学 故障特征提取 多分辨奇异值 经验模式分解 轴承故障诊断
下载PDF
基于集合经验模式分解的汽油机爆震特征提取 被引量:2
3
作者 李宁 杨建国 周瑞 《机械工程学报》 EI CAS CSCD 北大核心 2015年第2期148-154,共7页
爆震特征提取是汽油机点火闭环控制的前提和基础。基于集合经验模式分解(Ensemble empirical mode decomposition,EEMD),提出一种汽油机爆震特征提取方法。EEMD通过对信号加入有限幅度的高斯白噪声,利用高斯白噪声频率均匀分布的统计特... 爆震特征提取是汽油机点火闭环控制的前提和基础。基于集合经验模式分解(Ensemble empirical mode decomposition,EEMD),提出一种汽油机爆震特征提取方法。EEMD通过对信号加入有限幅度的高斯白噪声,利用高斯白噪声频率均匀分布的统计特性使信号在不同尺度上保持连续性,有效地抑制经验模式分解(Empirical mode decomposition,EMD)的模式混叠问题。研究了利用EEMD和EMD两种方法分别从汽油机缸内压力信号和缸盖振动信号中提取爆震特征的可行性和有效性。试验结果表明,对于缸内压力信号,EEMD和EMD均能提取出爆震特征;对于缸盖振动信号,EEMD可以提取出爆震特征,而EMD则由于模式混叠的影响,无法提取爆震特征。 展开更多
关键词 汽油机 爆震 特征提取 经验模式分解
下载PDF
基于经验模式分解的心电特征提取算法 被引量:4
4
作者 林绍杰 张攀登 +1 位作者 吴凯 吴效明 《生物医学工程研究》 2007年第4期328-330,359,共4页
本研究应用基于经验模式分解的心电特征提取方法,利用第一本征模函数(intrinsic mode function,IMF)分量对QRS波进行定位,并通过减少分解层数、筛选次数、处理区域等策略实现了快速算法。利用MIT-BIT心律失常数据库的数据进行算法测试,... 本研究应用基于经验模式分解的心电特征提取方法,利用第一本征模函数(intrinsic mode function,IMF)分量对QRS波进行定位,并通过减少分解层数、筛选次数、处理区域等策略实现了快速算法。利用MIT-BIT心律失常数据库的数据进行算法测试,取得较高的检测率,检测速度也有明显提高。实验结果表明,经验模式分解算法在QRS波定位中具有相当的优越性,临床应用中取得了良好的检测效果。 展开更多
关键词 经验模式分解 心电图 特征提取 算法 实时检测
下载PDF
基于完备总体经验模态分解和模糊熵结合的液压泵退化特征提取方法 被引量:6
5
作者 姜万录 孔德田 +2 位作者 李振宝 佟祥伟 岳文德 《计量学报》 CSCD 北大核心 2020年第2期202-209,共8页
针对液压泵振动信号具有非线性、非平稳性,以及信噪比低等特点,提出了基于完备总体经验模态分解和模糊熵结合的液压泵性能退化特征提取方法。首先,使用完备总体经验模态分解方法对液压泵振动信号进行分解,得到若干个固有模态函数分量。... 针对液压泵振动信号具有非线性、非平稳性,以及信噪比低等特点,提出了基于完备总体经验模态分解和模糊熵结合的液压泵性能退化特征提取方法。首先,使用完备总体经验模态分解方法对液压泵振动信号进行分解,得到若干个固有模态函数分量。其次,求取各个分量与原始信号的相关性,选取相关性较高的前几个分量作为有效分量并求其模糊熵,实现液压泵的退化特征提取,形成特征向量。最后,以液压泵不同退化状态下的实测数据为例,使用基于变量预测模型的模式识别方法对提取的特征向量进行验证。实验结果表明,该液压泵退化特征提取方法具有较高的精度,使退化状态识别的准确率提高到了100%。 展开更多
关键词 计量学 液压泵 状态识别 完备总体经验模态分解 模糊熵 退化特征提取 变量预测模型
下载PDF
基于迭代的集总经验模式分解算法的齿轮箱故障特征提取 被引量:1
6
作者 姜军生 林近山 《机械传动》 CSCD 北大核心 2011年第12期73-75,79,共4页
针对集总经验模式分解方法(Ensemble Empirical Mode Decomposition,EEMD)在实际应用中存在的盲目添加白噪声的问题,提出了一种迭代的集总经验模式分解方法(Iterative Ensemble EmpiricalMode Decomposition,IEEMD)。首先介绍了IEEMD方... 针对集总经验模式分解方法(Ensemble Empirical Mode Decomposition,EEMD)在实际应用中存在的盲目添加白噪声的问题,提出了一种迭代的集总经验模式分解方法(Iterative Ensemble EmpiricalMode Decomposition,IEEMD)。首先介绍了IEEMD方法,然后将EEMD方法与IEEMD方法用于实际齿轮箱故障信号的特征提取。结果表明,与EEMD方法相比,IEEMD方法可以得到更高分辨率的HHT时频谱图,可以从信号中提取更多的有用信息。说明IEEMD方法较好地克服了EEMD方法中存在的盲目添加白噪声的问题,适合于作为齿轮箱故障信号的特征提取方法。 展开更多
关键词 集总经验模式分解 迭代的集总经验模式分解 齿轮箱 特征提取
下载PDF
基于非线性小波变换和经验模式分解的轴承故障特征提取
7
作者 陈祥龙 胡春艳 +2 位作者 梅检民 肖云魁 贾继光 《军事交通学院学报》 2011年第11期78-82,共5页
针对滚动轴承等复杂零部件振动信号故障特征难于提取的特点,采集4组变速器轴承振动信号,构造基于第二代小波变换的非线性小波变换对振动信号进行自适应预处理,有效地去除了振动信号中的噪声,抑制了经验模式分解过程中的模态混叠。将预... 针对滚动轴承等复杂零部件振动信号故障特征难于提取的特点,采集4组变速器轴承振动信号,构造基于第二代小波变换的非线性小波变换对振动信号进行自适应预处理,有效地去除了振动信号中的噪声,抑制了经验模式分解过程中的模态混叠。将预处理后的信号进行经验模式分解,获得了一系列瞬时频率且具有物理意义的本征模函数,对每个本征模函数进行Hilbert变换,得到了振动信号的Hilbert边际谱,提取出了信号能量随瞬时频率变化的特征。 展开更多
关键词 非线性小波变换 经验模式分解 故障特征提取 HILBERT变换
下载PDF
基于改进的经验模式分解的旋转设备振动信号特征提取
8
作者 高伟 《汽轮机技术》 北大核心 2008年第4期289-291,295,共4页
针对旋转设备局部碰摩故障振动信号的特征,提出了一种基于经验模式分解(Emp iricalMode Decomposition,EMD)与小波分析相结合的故障特征提取的改进方法,先利用小波分析方法将振动信号分解为低、中、高3个频段,然后对各个频段的信号进行... 针对旋转设备局部碰摩故障振动信号的特征,提出了一种基于经验模式分解(Emp iricalMode Decomposition,EMD)与小波分析相结合的故障特征提取的改进方法,先利用小波分析方法将振动信号分解为低、中、高3个频段,然后对各个频段的信号进行EMD分解,实现碰摩、背景和噪声信号分离,从而提取旋转设备局部碰摩振动信号的故障特征。在某热电厂2号汽轮发电备用机组的碰摩故障诊断的应用中,仿真信号和试验数据的分析结果表明,该方法正确、有效,可应用于工程实践。 展开更多
关键词 改进的经验模式分解 故障特征 特征提取 旋转设备 汽轮发电机组
下载PDF
总体平均经验模式分解与1.5维谱方法的研究 被引量:71
9
作者 陈略 訾艳阳 +1 位作者 何正嘉 成玮 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第5期94-98,共5页
针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方... 针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方法对含有故障特征信息的IMF进行后处理.该方法具有避免模式混淆、抑制高斯白噪声、检测非线性耦合特征等特性,并以此来提取故障的微弱特征信息.根据待处理信号的时频特性与EEMD原理,提出了在EEMD方法中加入高斯白噪声的准则,通过信号仿真验证了EEMD方法的抗混分解能力.将EEMD与1.5维谱方法应用于机车走行部齿轮箱的监测诊断中,成功地提取出齿轮箱大齿轮齿根早期的裂纹故障. 展开更多
关键词 总体平均经验模式分解 1.5维谱 特征提取 齿轮裂纹故障
下载PDF
自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用 被引量:45
10
作者 雷亚国 孔德同 +1 位作者 李乃鹏 林京 《机械工程学报》 EI CAS CSCD 北大核心 2014年第3期64-70,共7页
总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)是针对经验模式分解(Empirical mode decomposition,EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模... 总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)是针对经验模式分解(Empirical mode decomposition,EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模式混淆的目的。然而,EEMD分解效果取决于添加噪声的幅值、筛选次数等参数的选择。目前的研究通常是人为选择这些参数,具有较大的盲目性和主观性,因此分解结果差强人意。为了解决以上问题,提出一种新的自适应总体平均经验模式分解方法。该方法基于EMD的滤波特性,在提取本征模式分量(Intrinsic mode function,IMF)的过程中自适应改变加入噪声的幅值,并对每个IMF自动选择不同的筛选次数,可以更好地削弱模式混淆。通过仿真试验验证了该方法的有效性,并将该方法应用于行星轮故障检测中,取得了比EEMD更好的故障检测结果。 展开更多
关键词 自适应总体平均经验模式分解 行星齿轮箱 故障检测
下载PDF
基于总体平均经验模式分解近似熵和混合PSO-BP算法的轴承故障诊断方法 被引量:9
11
作者 张淑清 黄文静 +3 位作者 胡永涛 宿新爽 陆超 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3048-3054,共7页
针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP... 针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP神经网络的权值和阈值,解决BP网络的全局收敛问题。将信号经EEMD得到的IMF分量与近似熵结合,组成特征向量,再将构造的特征向量输入到PSO-BP神经网络中进行模式识别。实验及工程应用实例证明了该方法的有效性和优越性。 展开更多
关键词 轴承 故障诊断 总体平均经验模式分解 近似熵 混合粒子群神经网络
下载PDF
一种基于总体平均经验模态分解的线谱提取方法 被引量:2
12
作者 刘千里 《舰船电子工程》 2020年第6期40-42,88,共4页
为有效提取目标辐射噪声线谱,采用了一种基于集成经验模态分解(EEMD)的自适应线谱及连续谱提取方法。对舰船辐射噪声频谱进行集成经验模态分解,然后选取合适的IMF进行线谱的提取,使用余量和剩余的IMF进行连续谱的准确估计。通过对舰船... 为有效提取目标辐射噪声线谱,采用了一种基于集成经验模态分解(EEMD)的自适应线谱及连续谱提取方法。对舰船辐射噪声频谱进行集成经验模态分解,然后选取合适的IMF进行线谱的提取,使用余量和剩余的IMF进行连续谱的准确估计。通过对舰船辐射噪声仿真信号分析,该方法能有效地提取舰船辐射噪声的线谱,与小波分析方法进行对比分析后表明,EEMD对信号的分析比小波分析有一定的优越性,而且因EEMD能够突出信号局部特征,对线谱能量有一定的增益。 展开更多
关键词 总体平均经验模态分解 辐射噪声 小波变换 线谱
下载PDF
完备总体平均局部特征尺度分解及其在转子故障诊断中的应用 被引量:13
13
作者 郑近德 程军圣 +1 位作者 聂永红 罗颂荣 《振动工程学报》 EI CSCD 北大核心 2014年第4期637-646,共10页
作为对经验模态分解(EMD)的改进,局部特征尺度分解(LCD)也有类似EMD的模态混淆问题。基于噪声辅助分析的总体平均经验模态分解(EEMD)和完备的EEMD(CEEMD)等是抑制分解模态混淆的有效途径。然而此类方法伪分量较多、得到的分量未必满足IM... 作为对经验模态分解(EMD)的改进,局部特征尺度分解(LCD)也有类似EMD的模态混淆问题。基于噪声辅助分析的总体平均经验模态分解(EEMD)和完备的EEMD(CEEMD)等是抑制分解模态混淆的有效途径。然而此类方法伪分量较多、得到的分量未必满足IMF分量定义等。针对此,提出了一种完备的总体平均局部特征尺度分解(CELCD),并通过仿真信号将CELCD方法与CEEMD进行了对比,结果表明CELCD能够有效抑制LCD模态混淆,而且在抑制伪分量的产生,提高正交性和分量的精确性等方面具有一定的优越性。最后论文将CELCD方法应用于转子碰摩故障的诊断,结果表明了方法的有效性。 展开更多
关键词 故障诊断 模态混淆 局部特征尺度分解 完备总体平均局部特征尺度分解 总体平均经验模态分解
下载PDF
基于总体经验模式分解的地震信号随机噪声消除 被引量:15
14
作者 史恒 李桂林 +2 位作者 王伟 历玉英 高星 《地球物理学进展》 CSCD 北大核心 2011年第1期71-78,共8页
地震资料去噪是地震数据处理非常重要的步骤,现代地震勘探对地震资料信噪比的要求越来越高.总体经验模式分解(ensemble empirical mode decomposition,简写为EEMD)是一种新的时域信号处理方法 ,它是对经验模式分解(empirical mode decom... 地震资料去噪是地震数据处理非常重要的步骤,现代地震勘探对地震资料信噪比的要求越来越高.总体经验模式分解(ensemble empirical mode decomposition,简写为EEMD)是一种新的时域信号处理方法 ,它是对经验模式分解(empirical mode decomposition,简写为EMD)的一种改进.EEMD将目标信号经验地分解为几个被称为本征模态函数(intrinsic mode function,简写为IMF)的子信号,它是一个自适应的带通滤波器组.本文介绍了EMD和EEMD分解的基本原理,提出了一种基于EEMD分解的地震信号随机噪声消除的方法 .本文利用含噪信号EEMD分解后其有效信号和随机噪声在IMF中差异分布的特点,给出一种地震信号随机噪声消除的新方法 . 展开更多
关键词 经验模式分解(EMD) 总体经验模式分解(EEMD) 随机噪声 去噪
下载PDF
基于EMD的胶合板损伤声发射信号特征提取及神经网络模式识别 被引量:13
15
作者 徐锋 刘云飞 《振动与冲击》 EI CSCD 北大核心 2012年第15期30-35,共6页
针对胶合板损伤声发射信号的非平稳性和损伤类别特征相互重叠的实际情况,提出了基于经验模态分解和BP神经网络相结合的信号特征提取和识别方法。首先对损伤声发射信号进行EMD分解,筛选出包含主要信息的本征模态函数分量;其次构建以各IM... 针对胶合板损伤声发射信号的非平稳性和损伤类别特征相互重叠的实际情况,提出了基于经验模态分解和BP神经网络相结合的信号特征提取和识别方法。首先对损伤声发射信号进行EMD分解,筛选出包含主要信息的本征模态函数分量;其次构建以各IMF分量的能量占比作为表征各损伤信号的特征向量;最后以提取的特征向量为输入样本,建立BP神经网络模式分类器对四类胶合板损伤信号进行识别。五层胶合板损伤的实测数据表明,该方法能够准确地提取出声发射信号特征并对其损伤类型进行有效地识别。 展开更多
关键词 声发射 经验模态分解 神经网络 特征提取 模式识别
下载PDF
基于总体平均经验模态分解的主动噪声控制系统研究 被引量:4
16
作者 罗磊 黄博妍 +1 位作者 孙金玮 温良 《自动化学报》 EI CSCD 北大核心 2016年第9期1432-1439,共8页
为了提高宽窄带混合噪声的消噪效果,本文提出一种基于总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)的主动噪声控制(Active noise control,ANC)系统,利用实时EEMD算法逐段将混合噪声分解成若干个固有模态函数(Intr... 为了提高宽窄带混合噪声的消噪效果,本文提出一种基于总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)的主动噪声控制(Active noise control,ANC)系统,利用实时EEMD算法逐段将混合噪声分解成若干个固有模态函数(Intrinsic mode functions,IMF)分量.因为这些IMF分量的频带各不相同,所以实现了混合噪声中宽带分量和窄带分量的有效分离,独立进行ANC处理后成功解决了处理混合噪声时带来的"火花"现象,而且避免了传统混合ANC(Hybrid ANC,HANC)系统中频率失调的影响.EEMD算法也是对混合噪声的平稳化处理过程,因此当混合噪声中出现非平稳变化时,本文提出的系统也能保持较好的系统稳定性.通过不同噪声环境下进行仿真分析,提出的ANC系统比HANC系统具有更好的系统稳定性和更小的稳态误差. 展开更多
关键词 混合噪声 主动噪声控制 总体平均经验模态分解 固有模态函数 非平稳变化
下载PDF
基于总体平均经验模态分解残差的故障诊断方法 被引量:3
17
作者 耿志强 王尊 +1 位作者 顾祥柏 林晓勇 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第3期293-300,共8页
为了提高化工过程故障诊断的效率,基于残差对故障状态具有敏感性以及经验模态分解(EMD)无需建模仅依据输入输出数据分析的优势,提出了一种基于总体平均经验模态分解(EEMD)残差进行故障诊断的新方法。基于历史数据的6σ控制图,确定残差... 为了提高化工过程故障诊断的效率,基于残差对故障状态具有敏感性以及经验模态分解(EMD)无需建模仅依据输入输出数据分析的优势,提出了一种基于总体平均经验模态分解(EEMD)残差进行故障诊断的新方法。基于历史数据的6σ控制图,确定残差的故障诊断控制限。利用在线实时数据采用贝叶斯信息准则在线确定EEMD的移动窗口。基于移动窗口的采样数据,在线获得EEMD残差最大值的变化,结合相应的故障诊断控制限在线诊断故障并确定故障发生时间及原因。该文方法与传统的希尔伯特谱分析方法相比,具有可在线诊断故障的优势,提高了故障诊断的准确率。将该文方法用于田纳西-伊士曼(TE)过程的故障在线诊断,验证了其有效性。 展开更多
关键词 总体平均经验模态分解 残差 故障诊断 贝叶斯信息准则 希尔伯特谱 田纳西-伊士曼过程
下载PDF
基于经验模式分解和移动平均的金融时间序列分析 被引量:7
18
作者 毕星 王巍 《天津大学学报(社会科学版)》 CSSCI 2010年第2期125-128,共4页
将经验模式分解理论应用于金融时间序列分析中,建立了一种新的基于经验模式分解和移动平均的综合分析模型。经验模式分解基于信号的局部特征时间尺度,能把复杂的信号分解为有限个基本模式分量之和,是一种完全在时域中进行的自适应分解,... 将经验模式分解理论应用于金融时间序列分析中,建立了一种新的基于经验模式分解和移动平均的综合分析模型。经验模式分解基于信号的局部特征时间尺度,能把复杂的信号分解为有限个基本模式分量之和,是一种完全在时域中进行的自适应分解,克服了小波等分解分析方法中的基函数选择问题,非常适用于非线性和非平稳过程的分析。股市分析实例表明,该模型能有效提高股市波动信号的信噪比,揭示股市价格的内在运动规律,增强分析结果的可靠性,在金融时间序列分析中具有很高的应用价值。 展开更多
关键词 经验模式分解 移动平均 金融时间序列 技术分析
下载PDF
基于经验模态分解剩余信号能量特征的滚动轴承故障模式智能识别 被引量:9
19
作者 李俊 刘永葆 余又红 《燃气涡轮试验与研究》 北大核心 2020年第3期28-32,41,共6页
针对滚动轴承故障模式识别问题,分析了振动信号的时域特征与经验模态分解剩余信号的能量特征,并将采集的特征一起构成了多域多类别的原始故障特征向量集,同时采用遗传算法对支持向量机径向基核函数参数和惩罚参数进行了寻优,提出了结合... 针对滚动轴承故障模式识别问题,分析了振动信号的时域特征与经验模态分解剩余信号的能量特征,并将采集的特征一起构成了多域多类别的原始故障特征向量集,同时采用遗传算法对支持向量机径向基核函数参数和惩罚参数进行了寻优,提出了结合经验模态分解剩余信号能量特征的遗传算法优化支持向量机参数的滚动轴承故障模式识别方法。实验表明,给出的故障模式识别方法,对滚动轴承的外圈故障、内圈故障、滚动体故障及正常状态有很好的识别效果,具有较强的实用性,能够为滚动轴承故障的模式识别和智能诊断提供帮助。 展开更多
关键词 经验模态分解 遗传算法 支持向量机 滚动轴承 特征提取 信号处理 模式识别
下载PDF
基于总体平均经验模态分解的语音增强算法研究 被引量:4
20
作者 陈建明 杨龙 《计算机应用与软件》 2017年第9期328-333,共6页
总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD... 总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD和结合小波阈值去噪思想,提出改进的EEMD方法。首先对原始信号进行EEMD分解,得到一系列IMF分量;其次对筛选后的每个IMF计算噪声强度;然后采用小波启发式阈值估计噪声并计算阈值;最后以软阈值的方式滤除每个IMF中噪声并重构信号还原出增强的语音。通过分析仿真信号和实测信号,结果表明:该算法对带噪语音有很好的滤波效果,与其他同类算法相比提高信噪比2~4 d B。 展开更多
关键词 总体平均经验模态分解(EEMD) 小波阈值去噪 语音增强算法
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部